skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly Acidic Conjugate‐Base‐Stabilized Carboxylic Acids Catalyze Enantioselective oxa‐Pictet–Spengler Reactions with Ketals
Abstract Acyclic ketone‐derived oxocarbenium ions are involved as intermediates in numerous reactions that provide valuable products, however, they have thus far eluded efforts aimed at asymmetric catalysis. We report that a readily accessible chiral carboxylic acid catalyst exerts control over asymmetric cyclizations of acyclic ketone‐derived trisubstituted oxocarbenium ions, thereby providing access to highly enantioenriched dihydropyran products containing a tetrasubstituted stereogenic center. The high acidity of the carboxylic acid catalyst, which exceeds that of the well‐known chiral phosphoric acid catalyst TRIP, is largely derived from stabilization of the carboxylate conjugate base through intramolecular anion‐binding to a thiourea site.  more » « less
Award ID(s):
1828064
PAR ID:
10126893
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
5
ISSN:
0044-8249
Page Range / eLocation ID:
p. 2044-2048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Acyclic ketone‐derived oxocarbenium ions are involved as intermediates in numerous reactions that provide valuable products, however, they have thus far eluded efforts aimed at asymmetric catalysis. We report that a readily accessible chiral carboxylic acid catalyst exerts control over asymmetric cyclizations of acyclic ketone‐derived trisubstituted oxocarbenium ions, thereby providing access to highly enantioenriched dihydropyran products containing a tetrasubstituted stereogenic center. The high acidity of the carboxylic acid catalyst, which exceeds that of the well‐known chiral phosphoric acid catalyst TRIP, is largely derived from stabilization of the carboxylate conjugate base through intramolecular anion‐binding to a thiourea site. 
    more » « less
  2. Abstract We report herein a rare example of enantiodivergent aldehyde addition with β‐alkenyl allylic boronates via chiral Brønsted acid catalysis. 2,6‐Di‐9‐anthracenyl‐substituted chiral phosphoric acid‐catalyzed asymmetric allylation using β‐vinyl substituted allylic boronate gave alcohols withRabsolute configuration. The sense of asymmetric induction of the catalyst in these reactions is opposite to those in prior reports. Moreover, in the presence of the same acid catalyst, the reactions with β‐2‐propenyl substituted allylic boronate generated homoallylic alcohol products withSabsolute configuration. Unusual substrate‐catalyst C−H⋅⋅⋅π interactions in the favoured reaction transition state were identified as the origins of observed enantiodivergence through DFT computational studies. 
    more » « less
  3. Abstract A readily accessible conjugate‐base‐stabilized carboxylic acid (CBSCA) catalyst facilitates highly enantioselective [4+2] cycloaddition reactions of salicylaldehyde‐derived acetals and cyclic enol ethers, resulting in the formation of polycyclic chromanes with oxygenation in the 2‐ and 4‐positions. Stereochemically more complex products can be obtained from racemic enol ethers. Spirocyclic products are also accessible. 
    more » « less
  4. Abstract We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α‐CH2Bpin‐substituted crotylboronate. Chiral phosphoric acid (S)‐A‐catalyzed asymmetric allyl addition with the reagent gaveZ‐anti‐homoallylic alcohols with excellent enantioselectivities andZ‐selectivities. When the enantiomeric acid catalyst (R)‐Awas utilized, the stereoselectivity was completely reversed andE‐anti‐homoallylic alcohols were obtained with highE‐selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks. 
    more » « less
  5. Abstract Control over the stereochemistry of excited-state photoreactions remains a significant challenge in organic synthesis. Recently, it has become recognized that the photophysical properties of simple organic substrates can be altered upon coordination to Lewis acid catalysts, and that these changes can be exploited in the design of highly enantioselective catalytic photoreactions. Chromophore activation strategies, wherein simple organic substrates are activated towards photoexcitation upon binding to a Lewis acid catalyst, rank among the most successful asymmetric photoreactions. Herein, we show that chiral Brønsted acids can also catalyze asymmetric excited-state photoreactions by chromophore activation. This principle is demonstrated in the context of a highly enantio- and diastereoselective [2+2] photocycloaddition catalyzed by a chiral phosphoramide organocatalyst. Notably, the cyclobutane products arising from this method feature atrans-cisstereochemistry that is complementary to other enantioselective catalytic [2+2] photocycloadditions reported to date. 
    more » « less