skip to main content


Title: Neutron star QPOs from oscillating, precessing hot, thick flow
ABSTRACT

Across black hole (BH) and neutron star (NS) low-mass X-ray binaries (LMXBs), there appears to be some correlation between certain high- and low-frequency quasi-periodic oscillations (QPOs). In a previous paper, we showed that for BH LMXBs, this could be explained by the simultaneous oscillation and precession of a hot, thick, torus-like corona. In the current work, we extend this idea to NS LMXBs by associating the horizontal branch oscillations (HBOs) with precession and the upper-kiloHertz (ukHz) QPO with vertical epicyclic motion. For the Atoll source 4U 1608-52, the model can match many distinct, simultaneous observations of the HBO and ukHz QPO by varying the inner and outer radius of the torus, while maintaining fixed values for the mass (MNS) and spin (a*) of the NS. The best-fitting values are MNS = 1.38 ± 0.03 M⊙ and a* = 0.325 ± 0.005. By combining these constraints with the measured spin frequency, we are able to obtain an estimate for the moment of inertia of INS = 1.40 ± 0.02 × 1045 g cm2, which places constraints on the equation of state. The model is unable to fit the lower-kHz QPO, but evidence suggests that QPO may be associated with the boundary layer between the accretion flow and the NS surface, which is not treated in this work.

 
more » « less
Award ID(s):
1907850
NSF-PAR ID:
10126910
Author(s) / Creator(s):
 
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3245-3250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Many accreting black holes and neutron stars exhibit rapid variability in their X-ray light curves, termed quasi-periodic oscillations (QPOs). The most commonly observed type is the low-frequency (≲10 Hz), type-C QPO, while only a handful of sources exhibit high-frequency QPOs (≳60 Hz). The leading model for the type-C QPO is Lense-Thirring precession of a hot, geometrically thick accretion flow that is misaligned with the black hole’s spin axis. However, existing versions of this model have not taken into account the effects of a surrounding, geometrically thin disc on the precessing, inner, geometrically thick flow. In Bollimpalli et. al 2023, using a set of GRMHD simulations of tilted, truncated accretion discs, we confirmed that the outer thin disc slows down the precession rate of the precessing torus, which has direct observational implications for type-C QPOs. In this paper, we provide a detailed analysis of those simulations and compare them with an aligned truncated disc simulation. We find that the misalignment of the disc excites additional variability in the inner hot flow, which is absent in the comparable aligned-disc simulations. This suggests that the misalignment may be a crucial requirement for producing QPOs. We attribute this variability to global vertical oscillations of the inner torus at epicyclic frequencies corresponding to the transition radius. This explanation is consistent with current observations of higher frequency QPOs in black hole X-ray binary systems.

     
    more » « less
  2. Abstract

    Mass measurements from low-mass black hole X-ray binaries (LMXBs) and radio pulsars have been used to identify a gap between the most massive neutron stars (NSs) and the least massive black holes (BHs). BH mass measurements in LMXBs are typically only possible for transient systems: outburst periods enable detection via all-sky X-ray monitors, while quiescent periods enable radial velocity measurements of the low-mass donor. We quantitatively study selection biases due to the requirement of transient behavior for BH mass measurements. Using rapid population synthesis simulations (COSMIC), detailed binary stellar-evolution models (MESA), and the disk instability model of transient behavior, we demonstrate that transient LMXB selection effects introduce observational biases, and can suppress mass-gap BHs in the observed sample. However, we find a population of transient LMXBs with mass-gap BHs form through accretion-induced collapse of an NS during the LMXB phase, which is inconsistent with observations. These results are robust against variations of binary evolution prescriptions. The significance of this accretion-induced collapse population depends upon the maximum NS birth massMNS,birthmax. To reflect the observed dearth of low-mass BHs,COSMICandMESAmodels favorMNS,birthmax2M. In the absence of further observational biases against LMXBs with mass-gap BHs, our results indicate the need for additional physics connected to the modeling of LMXB formation and evolution.

     
    more » « less
  3. ABSTRACT Type-C quasi-periodic oscillations (QPOs) are the low-frequency QPOs most commonly observed during the hard spectral state of X-ray binary systems. The leading model for these QPOs is the Lense-Thirring precession of a hot geometrically thick accretion flow that is misaligned with respect to the black hole spin axis. However, none of the work done to date has accounted for the effects of a surrounding geometrically thin disc on this precession, as would be the case in the truncated disc picture of the hard state. To address this, we perform a set of general relativistic magnetohydrodynamics simulations of truncated discs misaligned with the spin axes of their central black holes. Our results confirm that the inner-hot flow still undergoes precession, though at a rate that is only 5 per cent of what is predicted for an isolated precessing torus. We find that the exchange of angular momentum between the outer thin and the inner thick disc causes this slow-down in the precession rate and discuss its relevance to type-C QPOs. 
    more » « less
  4. Abstract

    The angular momentum of gas feeding a black hole (BH) may be misaligned with respect to the BH spin, resulting in a tilted accretion disk. Rotation of the BH drags the surrounding spacetime, manifesting as Lense–Thirring torques that lead to disk precession and warping. We study these processes by simulating a thin (H/r= 0.02), highly tilted (=65°) accretion disk around a rapidly rotating (a= 0.9375) BH at extremely high resolutions, which we performed using the general-relativistic magnetohydrodynamic codeH-AMR. The disk becomes significantly warped and continuously tears into two individually precessing subdisks. We find that mass accretion rates far exceed the standardα-viscosity expectations. We identify two novel dissipation mechanisms specific to warped disks that are the main drivers of accretion, distinct from the local turbulent stresses that are usually thought to drive accretion. In particular, we identify extreme scale height oscillations that occur twice an orbit throughout our disk. When the scale height compresses, “nozzle” shocks form, dissipating orbital energy and driving accretion. Separate from this phenomenon, there is also extreme dissipation at the location of the tear. This leads to the formation of low-angular momentum “streamers” that rain down onto the inner subdisk, shocking it. The addition of low-angular momentum gas to the inner subdisk causes it to rapidly accrete, even when it is transiently aligned with the BH spin and thus unwarped. These mechanisms, if general, significantly modify the standard accretion paradigm. Additionally, they may drive structural changes on much shorter timescales than expected inα-disks, potentially explaining some of the extreme variability observed in active galactic nuclei.

     
    more » « less
  5. ABSTRACT

    The merging of a binary system involving two neutron stars (NSs), or a black hole (BH) and an NS, often results in the emission of an electromagnetic (EM) transient. One component of this EM transient is the epic explosion known as a kilonova (KN). The characteristics of the KN emission can be used to probe the equation of state (EoS) of NS matter responsible for its formation. We predict KN light curves from computationally simulated BH–NS mergers, by using the 3D radiative transfer code possis. We investigate two EoSs spanning most of the allowed range of the mass–radius diagram. We also consider a soft EoS compatible with the observational data within the so-called 2-families scenario in which hadronic stars co-exist with strange stars. Computed results show that the 2-families scenario, characterized by a soft EoS, should not produce a KN unless the mass of the binary components are small (MBH ≤ 6 M⊙ and MNS ≤ 1.4 M⊙) and the BH is rapidly spinning (χBH ≥ 0.3). In contrast, a strong KN signal potentially observable from future surveys (e.g. the Vera Rubin Observatory) is produced in the 1-family scenario for a wider region of the parameter space, and even for non-rotating BHs (χBH = 0) when MBH = 4 M⊙ and MNS = 1.2 M⊙. We also provide a fit that allows for the calculation of the unbound mass from the observed KN magnitude, without running timely and costly radiative transfer simulations. Findings presented in this paper will be used to interpret light curves anticipated during the fourth observing run (O4), of the advanced LIGO, advanced Virgo, and KAGRA interferometers and thus to constrain the EoS of NS matter.

     
    more » « less