We present a straightforward argument for why the luminous, hard state of black hole X-ray binaries (BHXRBs) cannot always be associated with a magnetically arrested accretion disc (MAD). It relies on three core premises: (1) that the type-C quasi-periodic oscillation (QPO) is best explained by Lense–Thirring (LT) precession of a tilted, inner, hot flow; (2) that observed optical and infrared (IR) QPOs with the same or lower frequency as the type-C QPO suggest the jet, too, must precess in these systems; and (3) that numerical simulations of MADs show that their strong magnetic fields promote alignment of the disc with the black hole and, thereby, suppress LT precession. If all three premises hold true, then, at least whenever the optical and IR QPOs are observed alongside the type-C QPO, these systems cannot be in the MAD state. Extending the argument further, if the type-C QPO is always associated with LT precession, then it would rule out MADs anytime this timing feature is seen, which covers nearly all BHXRBs when they are in the luminous, hard and hard-intermediate states.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract Jet precession is sometimes invoked to explain asymmetries in radio galaxy (RG) jets and “X/S/Z-shaped” RGs, caused by the presence of a binary black hole companion to the source active galactic nucleus or by accretion instabilities. We present a series of simulations of RG jet precession to examine how these sources would evolve over time, including a passive distribution of cosmic-ray electrons so we can model radio synchrotron emissions and create synthetic radio maps of the sources. We find that a single source viewed from different angles can result in differing RG morphological classifications, confusing physical implications of these classifications. Additionally, the jet trajectories can become unstable due to their own self-interactions and lead to “reorientation events” that may look like the effects of external dynamics such as shocks, winds, or cold fronts in the medium. Finally, something akin to an “Odd Radio Circle” may be observed in the case of viewing the radio remnant of such a precessing source from a line of sight near the precession axis.
-
Abstract We combine new data from the Karl G. Jansky Very Large Array with previous radio observations to create a more complete picture of the ongoing interactions between the radio jet from galaxy NGC 541 and the star-forming system known as Minkowski’s Object (MO). We then compare those observations with synthetic radio data generated from a new set of magnetohydrodynamic simulations of jet–cloud interactions specifically tailored to the parameters of MO. The combination of radio intensity, polarization, and spectral index measurements all convincingly support the interaction scenario and provide additional constraints on the local dynamical state of the intracluster medium and the time since the jet–cloud interaction first began. In particular, we show that only a simulation with a bent radio jet can reproduce the observations.
-
ABSTRACT Across black hole (BH) and neutron star (NS) low-mass X-ray binaries (LMXBs), there appears to be some correlation between certain high- and low-frequency quasi-periodic oscillations (QPOs). In a previous paper, we showed that for BH LMXBs, this could be explained by the simultaneous oscillation and precession of a hot, thick, torus-like corona. In the current work, we extend this idea to NS LMXBs by associating the horizontal branch oscillations (HBOs) with precession and the upper-kiloHertz (ukHz) QPO with vertical epicyclic motion. For the Atoll source 4U 1608-52, the model can match many distinct, simultaneous observations of the HBO and ukHz QPO by varying the inner and outer radius of the torus, while maintaining fixed values for the mass (MNS) and spin (a*) of the NS. The best-fitting values are MNS = 1.38 ± 0.03 M⊙ and a* = 0.325 ± 0.005. By combining these constraints with the measured spin frequency, we are able to obtain an estimate for the moment of inertia of INS = 1.40 ± 0.02 × 1045 g cm2, which places constraints on the equation of state. The model is unable to fit the lower-kHz QPO, but evidence suggests that QPO may be associated with the boundary layer between the accretion flow and the NS surface, which is not treated in this work.
-
ABSTRACT Type-C quasi-periodic oscillations (QPOs) are the low-frequency QPOs most commonly observed during the hard spectral state of X-ray binary systems. The leading model for these QPOs is the Lense-Thirring precession of a hot geometrically thick accretion flow that is misaligned with respect to the black hole spin axis. However, none of the work done to date has accounted for the effects of a surrounding geometrically thin disc on this precession, as would be the case in the truncated disc picture of the hard state. To address this, we perform a set of general relativistic magnetohydrodynamics simulations of truncated discs misaligned with the spin axes of their central black holes. Our results confirm that the inner-hot flow still undergoes precession, though at a rate that is only 5 per cent of what is predicted for an isolated precessing torus. We find that the exchange of angular momentum between the outer thin and the inner thick disc causes this slow-down in the precession rate and discuss its relevance to type-C QPOs.more » « less
-
Abstract We present and analyze a set of three-dimensional, global, general relativistic radiation magnetohydrodynamic simulations of thin, radiation-pressure-dominated accretion disks surrounding a nonrotating, stellar-mass black hole. The simulations are initialized using the Shakura–Sunyaev model with a mass accretion rate of M ̇ = 3 L Edd / c 2 (corresponding to L = 0.17 L Edd ). Our previous work demonstrated that such disks are thermally unstable when accretion is driven by an α -viscosity. In the present work, we test the hypothesis that strong magnetic fields can both drive accretion through magnetorotational instability and restore stability to such disks. We test four initial magnetic field configurations: (1) a zero-net-flux case with a single, radially extended set of magnetic field loops (dipole), (2) a zero-net-flux case with two radially extended sets of magnetic field loops of opposite polarity stacked vertically (quadrupole), (3) a zero-net-flux case with multiple radially concentric rings of alternating polarity (multiloop), and (4) a net-flux, vertical magnetic field configuration (vertical). In all cases, the fields are initially weak, with a gas-to-magnetic pressure ratio ≳100. Based on the results of these simulations, we find that the dipole and multiloop configurations remain thermally unstable like their α -viscosity counterpart, in our case collapsing vertically on the local thermal timescale and never fully recovering. The vertical case, on the other hand, stabilizes and remains so for the duration of our tests (many thermal timescales). The quadrupole case is intermediate, showing signs of both stability and instability. The key stabilizing factor is the ability of specific field configurations to build up and sustain strong, P mag ≳ 0.5 P tot , toroidal fields near the midplane of the disk. We discuss the reasons why certain configurations are able to do this effectively and others are not. We then compare our stable simulations to the standard Shakura–Sunyaev disk.more » « less
-
ABSTRACT Irradiation of the accretion disc causes reflection signatures in the observed X-ray spectrum, encoding important information about the disc structure and density. A Type I X-ray burst will strongly irradiate the accretion disc and alter its properties. Previous numerical simulations predicted the evolution of the accretion disc due to an X-ray burst. Here, we process time-averaged simulation data of six time intervals to track changes in the reflection spectrum from the burst onset to just past its peak. We divide the reflecting region of the disc within r ≲ 50 km into six to seven radial zones for every time interval and compute the reflection spectra for each zone. We integrate these reflection spectra to obtain a total reflection spectrum per time interval. The burst ionizes and heats the disc, which gradually weakens all emission lines. Compton scattering and bremsstrahlung rates increase in the disc during the burst rise, and the soft excess at <3 keV rises from ≈4 to ≈38 per cent of the total emission at the burst peak. A soft excess is expected to be ubiquitous in the reflection spectra of X-ray bursts. Structural disc changes such as inflation because of heating or drainage of the inner disc due to Poynting–Robertson drag affect the strength of the soft excess. Further studies on the dependence of the reflection spectrum characteristics to changes in the accretion disc during an X-ray burst may lead to probes of the disc geometry.more » « less
-
null (Ed.)Abstract The magneto-rotational instability (MRI) is the most likely mechanism for transportation of angular momentum and dissipation of energy within hot, ionized accretion discs. This instability is produced through the interactions of a differentially rotating plasma with an embedded magnetic field. Like all substances in nature, the plasma in an accretion disc has the potential to become magnetically polarized when it interacts with the magnetic field. In this paper we study the effect of this magnetic susceptibility, parameterized by χm, on the MRI, specifically within the context of black hole accretion. We find from a linear analysis within the Newtonian limit that the minimum wavelength of the first unstable mode and the wavelength of the fastest growing mode are shorter in paramagnetic (χm > 0) than in diamagnetic (χm < 0) discs, all other parameters being equal. Furthermore, the magnetization parameter (ratio of gas to magnetic pressure) in the saturated state should be smaller when the magnetic susceptibility is positive than when it is negative. We confirm this latter prediction through a set of numerical simulations of magnetically polarized black hole accretion discs. We additionally find that the vertically integrated stress and mass accretion rate are somewhat larger when the disc is paramagnetic than when it is diamagnetic. If astrophysical discs are able to become magnetically polarized to any significant degree, then our results would be relevant to properly interpreting observations.more » « less
-
ABSTRACT Long-term observations have shown that black hole X-ray binaries exhibit strong, aperiodic variability on time-scales of a few milliseconds to seconds. The observed light curves display various characteristic features like a lognormal distribution of flux and a linear rms–flux relation, which indicate that the underlying variability process is stochastic in nature. It is also thought to be intrinsic to accretion. This variability has been modelled as inward propagating fluctuations of mass accretion rate, although the physical process driving the fluctuations remains puzzling. In this work, we analyse five exceptionally long-duration general relativistic magnetohydrodynamic (GRMHD) simulations of optically thin, geometrically thick, black hole accretion flows to look for hints of propagating fluctuations in the simulation data. We find that the accretion profiles from these simulations do show evidence for inward propagating fluctuations below the viscous frequency by featuring strong radial coherence and positive time lags when comparing smaller to larger radii, although these time lags are generally shorter than the viscous time-scale and are frequency-independent. Our simulations also support the notion that the fluctuations in $\dot{M}$ build up in a multiplicative manner, as the simulations exhibit linear rms–mass flux relations, as well as lognormal distributions of their mass fluxes. When combining the mass fluxes from the simulations with an assumed emissivity profile, we additionally find broad agreement with observed power spectra and time lags, including a recovery of the frequency dependency of the time lags.more » « less