Six periods of 2-nm-thick In0.15Ga0.85N/13-nm-thick GaN blue emitting multi-quantum-well (MQW) layers are grown on sapphire (Al2O3) and silicon (Si) substrates. X-ray diffraction, Raman spectroscopy, atomic force microscopy, temperature-dependent photoluminescence (PL), Micro-PL, and time-resolved PL are used to compare the structural and optical properties, and the carrier dynamics of the blue emitting active layers grown on Al2O3 and Si substrates. Indium clustering in the MQW layers is observed to be more pronounced on Al2O3 than those on Si as revealed through investigating band-filling effects of emission centers, S-shaped peak emission energy shifts with increasing temperature, and PL intensity-peak energy spatial nonuniformity correlations. The smaller indium clustering effects in MQW on Si are attributed to the residual tensile strain in the GaN buffer layer, which decreases the compressive strain and thus the piezoelectric polarization field in the InGaN quantum wells. Despite a 30% thinner total epitaxial thickness of 3.3 µm, MQW on Si exhibits a higher IQE than those on Al2O3 in terms of internal quantum efficiency (IQE) at temperatures below 250 K, and a similar IQE at 300 K (30% vs 33%). These results show that growth of blue emitting MQW layers on Si is a promising approach compared to those conventionally grown on Al2O3. 
                        more » 
                        « less   
                    
                            
                            Suppression of indium clustering and quantum confined stark effect of InGaN LED on silicon (111)
                        
                    
    
            Optical properties of InGaN/GaN multi-quantum-well (MQWs) grown on sapphire and on Si(111) are reported. The tensile strain in the MQW on Si is shown to be beneficial for indium incorporation and Quantum-confined Stark Effect reduction in the multi-quantum wells. Raman spectroscopy reveals compressive strains of -0.107% in MQW on sapphire and tensile strain of +0.088% in MQW on Si. Temperature-dependent photoluminescence shows in MQW on sapphire a strong (30 meV peak-to-peak) S-shaped wavelength shift with decreasing temperature (6 K to 300K), whereas MQW on Si luminescence wavelength is stable and red-shifts monotonically. Micro-photoluminescence mapping over 200 by 200 μm2 shows the emission wavelength spatial uniformity of MQW on Si is 2.6 times higher than MQW on sapphire, possibly due to a more uniform indium incorporation in the multi-quantum-wells as a result of the tensile strain in MQW on Si. A positive correlation between emission energy and intensity is observed in MQW on sapphire but not in those on Si. Despite the lower crystal quality of MQW on Si revealed by atomic force microscopy, it exhibits a higher internal quantum efficiency (IQE) than MQW on sapphire from 6 K to 250 K, and equalizes at 300 K. Overall, MQW on Si exhibits a high IQE, higher wavelength spatial uniformity and temperature stability, while providing a much more scalable platform than MQW on sapphire for next generation integrated photonics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652871
- PAR ID:
- 10127221
- Date Published:
- Journal Name:
- Gallium Nitride Materials and Devices XIV
- Volume:
- 10918
- Issue:
- 1091822
- Page Range / eLocation ID:
- 73
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Time-resolved and quasi-cw photoluminescence (PL) spectroscopy was applied to measure the internal quantum efficiency (IQE) of c-plane InGaN single quantum wells (QWs) grown on sapphire substrates using metal-organic chemical vapor deposition. The identical temperature dependence of the PL decay times and radiative recombination times at low temperatures confirmed that the low temperature IQE is 100%, which allowed evaluation of the absolute IQE at elevated temperatures. At 300 K, the IQE for QWs emitting in green and green–yellow spectral regions was more than 60%. The weak nonradiative recombination in QWs with a substantial concentration of threading dislocations and V-defects (∼2 × 108 cm−2) shows that these extended defects do not notably affect the carrier recombination.more » « less
- 
            Temperature-dependent continuous-excitation and time-resolved photoluminescence are studied to probe carrier localization and recombination in nearly strain-balanced m-plane In0.09Ga0.91N/Al0.19Ga0.81N multi-quantum wells grown by plasma-assisted molecular-beam epitaxy. An average localization depth of 21 meV is estimated for the undoped sample. This depth is much smaller than the reported values in polar structures and m-plane InGaN quantum wells. As part of this study, temperature and magnetic field dependence of time-resolved photoluminescence is performed. At 2 K, an initial fast decay time of 0.3 ns is measured for both undoped and doped structures. The undoped sample also exhibits a slow decay component with a time scale of 2.2 ns. The existence of two relaxation paths in the undoped structure can be attributed to different localization centers. The fast relaxation decays are relatively insensitive to external magnetic fields, while the slower relaxation time constant decreases significantly with increasing magnetic fields. The fast decay time scale in the undoped sample is likely due to indium fluctuations in the quantum well. The slow decay time may be related to carrier localization in the barriers. The addition of doping leads to a single fast decay time likely due to stronger exciton localization in the InGaN quantum wells.more » « less
- 
            Data are presented on strain compensation in InGaN-based multiple quantum wells (MQW) using AlGaN interlayers (ILs). The MQWs consist of five periods of InxGa1-xN/AlyGa1-yN/GaN emitting in the green (λ ∼ 535 nm ± 15 nm), and the AlyGa1-yN IL has an Al composition of y = 0.42. The IL is varied from 0 - 2.1 nm, and the relaxation of the MQW with respect to the GaN template layer varies with IL thickness as determined by reciprocal space mapping about the (202¯5) reflection. The minimum in the relaxation occurs at an interlayer thickness of 1 nm, and the MQW is nearly pseudomorphic to GaN. Both thinner and thicker ILs display increased relaxation. Photoluminescence data shows enhanced spectral intensity and narrower full width at half maximum for the MQW with 1 nm thick ILs, which is a product of pseudomorphic layers with lower defect density and non-radiative recombination.more » « less
- 
            We report on the growth of high-quality GaAs semiconductor materials on an AlAs/sapphire substrate by molecular beam epitaxy. The growth of GaAs on sapphire centers on a new single-step growth technique that produces higher-quality material than a previously reported multi-step growth method. Omega-2theta scans confirmed the GaAs (111) orientation. Samples grown at 700 °C displayed the highest crystal quality with minimal defects and strain, evidenced by narrow FWHM values of the rocking curve. By varying the As/Ga flux ratio and the growth temperature, we significantly improved the quality of the GaAs layer on sapphire, as compared to that obtained in multi-step studies. Photoluminescence measurements at room temperature and 77 K further support these findings. This study underscores the critical role of the As/Ga flux ratio and growth temperature in optimizing GaAs epitaxial growth on sapphire.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    