skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FileCrypt: Transparent and Scalable Protection of Sensitive Data in Browser-based Cloud Storage
While cloud storage has become a common practice for more and more organizations, many severe cloud data breaches in recent years show that protecting sensitive data in the cloud is still a challenging problem. Although various mitigation techniques have been proposed, they are not scalable for large scale enterprise users with strict security requirements or often depend on error-prone human interventions. To address these issues, we propose FileCrypt, a generic proxy-based technique for enterprise users to automatically secure sensitive files in browser-based cloud storage. To the best of our knowledge, FileCrypt is the first attempt towards transparent and fully automated file encryption for browser-based cloud storage services. More importantly, it does not require active cooperations from cloud providers or modifications of existing cloud applications. By instrumenting mandatory file-related JavaScript APIs in browsers, FileCrypt can naturally support new cloud storage services and guarantee the file encryption cannot be bypassed. We have evaluated the efficacy of FileCrypt on a number of popular realworld cloud storage services. The results show that it can protect files on the public cloud with relatively low overheads.  more » « less
Award ID(s):
1662487
PAR ID:
10127234
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2019 IEEE Conference on Communications and Network Security (CNS),
Page Range / eLocation ID:
46 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities. 
    more » « less
  2. null (Ed.)
    Users face many challenges in keeping their personal file collections organized. While current file-management interfaces help users retrieve files in disorganized repositories, they do not aid in organization. Pertinent files can be difficult to find, and files that should have been deleted may remain. To help, we designed KondoCloud, a file-browser interface for personal cloud storage. KondoCloud makes machine learning-based recommendations of files users may want to retrieve, move, or delete. These recommendations leverage the intuition that similar files should be managed similarly. We developed and evaluated KondoCloud through two complementary online user studies. In our Observation Study, we logged the actions of 69 participants who spent 30 minutes manually organizing their own Google Drive repositories. We identified high-level organizational strategies, including moving related files to newly created sub-folders and extensively deleting files. To train the classifiers that underpin KondoCloud's recommendations, we had participants label whether pairs of files were similar and whether they should be managed similarly. In addition, we extracted ten metadata and content features from all files in participants' repositories. Our logistic regression classifiers all achieved F1 scores of 0.72 or higher. In our Evaluation Study, 62 participants used KondoCloud either with or without recommendations. Roughly half of participants accepted a non-trivial fraction of recommendations, and some participants accepted nearly all of them. Participants who were shown the recommendations were more likely to delete related files located in different directories. They also generally felt the recommendations improved efficiency. Participants who were not shown recommendations nonetheless manually performed about a third of the actions that would have been recommended. 
    more » « less
  3. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files' sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file's perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users' desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia's performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  4. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files’ sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file’s perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users’ desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia’s performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  5. null (Ed.)
    Cloud photo services are widely used for persistent, convenient, and often free photo storage, which is especially useful for mobile devices. As users store more and more photos in the cloud, significant privacy concerns arise because even a single compromise of a user's credentials give attackers unfettered access to all of the user's photos. We have created Easy Secure Photos (ESP) to enable users to protect their photos on cloud photo services such as Google Photos. ESP introduces a new client-side encryption architecture that includes a novel format-preserving image encryption algorithm, an encrypted thumbnail display mechanism, and a usable key management system. ESP encrypts image data such that the result is still a standard format image like JPEG that is compatible with cloud photo services. ESP efficiently generates and displays encrypted thumbnails for fast and easy browsing of photo galleries from trusted user devices. ESP's key management makes it simple to authorize multiple user devices to view encrypted image content via a process similar to device pairing, but using the cloud photo service as a QR code communication channel. We have implemented ESP in a popular Android photos app for use with Google Photos and demonstrate that it is easy to use and provides encryption functionality transparently to users, maintains good interactive performance and image quality while providing strong privacy guarantees, and retains the sharing and storage benefits of Google Photos without any changes to the cloud service. 
    more » « less