Microgrids are empowered by the advances in renewable energy generation, which enable the microgrids to generate the required energy for supplying their loads and trade the surplus energy to other microgrids or the macrogrid. Microgrids need to optimize the scheduling of their demands and energy levels while trading their surplus with others to minimize the overall cost. This can be affected by various factors such as variations in demand, energy generation, and competition among microgrids due to their dynamic nature. Thus, reaching optimal scheduling is challenging due to the uncertainty caused by the generation/consumption of renewable energy and the complexity of interconnected microgrids and their interplay. Previous works mainly rely on modeling-based approaches and the availability of precise information on microgrid dynamics. This paper addresses the energy trading problem among microgrids by minimizing the cost while uncertainty exists in microgrid generation and demand. To this end, a Bayesian coalitional reinforcement learning-based model is introduced to minimize the energy trading cost among microgrids by forming stable coalitions. The results show that the proposed model can minimize the cost up to 23% with respect to the coalitional game theory model.
more »
« less
Peer-to-Peer Energy Trading in DC Packetized Power Microgrids
As distributed energy resources (DERs) are widely deployed, DC packetized power microgrids have been considered as a promising solution to incorporate DERs effectively and steadily. In this paper, we consider a DC packetized power microgrid, where the energy is dispatched in the form of power packets with the assist of a power router. However, the benefits of the microgrid can only be realized when energy subscribers (ESs) equipped with DERs actively participate in the energy market. Therefore, peer-to-peer (P2P) energy trading is necessary in the DC packetized power microgrid to encourage the usage of DERs. Different from P2P energy trading in AC microgrids, the dispatching capability of the router needs to be considered in DC microgrids, which will complicate the trading problem. To tackle this challenge, we formulate the P2P trading problem as an auction game, in which the demander ESs submit bids to compete for power packets, and a controller decides the energy allocation and power packet scheduling. Analysis of the proposed scheme is provided, and its effectiveness is validated through simulation.
more »
« less
- Award ID(s):
- 1824710
- NSF-PAR ID:
- 10127247
- Date Published:
- Journal Name:
- IEEE Journal on Selected Areas in Communications
- ISSN:
- 0733-8716
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rise of peer-to-peer (P2P) marketplace paradigms has transformed existing marketplace models, but the extent to which this approach can be applied to the energy marketplace has yet to be considered. In this paper, we examine existing approaches taken in the application of a P2P paradigm to the energy marketplace, further presenting an approach towards facilitating an online P2P energy marketplace, implementing a prototype P2P web application named SolTrade. Furthermore, we submit initial statistics based on simulated transactions facilitated through the platform, which illustrate the physical impact of marketplace transactions on the energy grid. In particular, these results show that, as the number of users rises, the chance of overloading the grid rises, but the chance of the grid being unable to sustain itself without an external source of energy falls.more » « less
-
AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid.more » « less
-
null (Ed.)Peer-to-peer energy trading within microgrid (MG) communities emerges as a key enabler of the future transactive distribution system and the transactive electricity market. Energy trading within MGs refers to the idea that the surplus energy of one MG can be used to satisfy the demand of another MG or a group of MGs that form an MG community. These communities can be dynamically established through time, based on the variations of demand and supply of the interconnected MGs. In many modern MGs, Electric Vehicles (EVs) have been considered as a viable storage option due to their ease of use (plug-and-play) and their growing adoption rates by drivers. On the other hand, the dynamic nature of EVs escalates the uncertainty in the transactive distribution system. In this paper, we study the problem of energy trading among MGs and EVs with the aim of power loss minimization where there is uncertainty. We propose a novel Bayesian Coalition Game (BCG) based algorithm, which allows the MGs and EVs to reduce the overall power loss by allowing them to form coalitions intelligently. The proposed scheme is compared with a conventional coalitional game theory-based approach and a Q-learning based approach. Our results show significant improvement over other compared techniques.more » « less
-
Enhancing grid resilience is proposed through the integration of distributed energy resources (DERs) with microgrids. Due to the diverse nature of DERs, there is a need to explore the optimal combined operation of these energy sources within the framework of microgrids. As such, this paper presents the design, implementation and validation of a Model Predictive Control (MPC)-based secondary control scheme to tackle two challenges: optimal islanded operation, and optimal re-synchronization of a microgrid. The MPC optimization algorithm dynamically adjusts input signals, termed manipulated variables, for each DER within the microgrid, including a gas turbine, an aggregate photovoltaic (PV) unit, and an electrical battery energy storage (BESS) unit. To attain optimal islanded operation, the secondary-level controller based on Model Predictive Control (MPC) was configured to uphold microgrid functionality promptly following the islanding event. Subsequently, it assumed the task of power balancing within the microgrid and ensuring the reliability of the overall system. For optimal re-synchronization, the MPC-based controller was set to adjust the manipulated variables to synchronize voltage and angle with the point of common coupling of the system. All stages within the microgrid operation were optimally achieved through one MPC-driven control system, where the controller can effectively guide the system to different goals by updating the MPC’s target reference. More importantly, the results show that the MPC-based control scheme is capable of controlling different DERs simultaneously, mitigating potentially harmful transient rotor torques from the re-synchronization as well as maintaining the microgrid within system performance requirements.more » « less