skip to main content


Title: High School Technology as a NON-predictor of First College Math Course
Previous research has shown that initial mathematics course placement in college is a strong predictor of persistence to an engineering degree. This study examines whether greater access to devices used in high school STEM courses is positively related to a student’s college math course placement. Both qualitative and quantitative data were collected and analyzed. In the quantitative analysis, data on freshmen in Engineering and Engineering-related programs from across 20 public institutions within the same state revealed that classrooms with wireless access and the number of devices dedicated for student use in their high schools were not useful predictors of their math course placement in college. This runs counter to intuition and may provide new insight into the effectiveness of technology implementation within high school classrooms. In a qualitative analysis, the type of devices, frequency, and manner in which the devices were implemented in high school math courses were examined.  more » « less
Award ID(s):
1744497
NSF-PAR ID:
10127268
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Southeastern Sectional
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous research has shown that initial mathematics course placement in college is a strong predictor of persistence to an engineering degree. This study examines whether greater access to devices used in high school STEM courses is positively related to a student’s college math course placement. Both qualitative and quantitative data were collected and analyzed. In the quantitative analysis, data on freshmen in Engineering and Engineering-related programs from across 20 public institutions within the same state revealed that classrooms with wireless access and the number of devices dedicated for student use in their high schools were not useful predictors of their math course placement in college. This runs counter to intuition and may provide new insight into the effectiveness of technology implementation within high school classrooms. In a qualitative analysis, the type of devices, frequency, and manner in which the devices were implemented in high school math courses were examined. 
    more » « less
  2. National data indicate that initial mathematics course placement in college is a strong predictor of persistence to degree in engineering, with students placed in calculus persisting at nearly twice the rate of those placed below calculus. Within the state of South Carolina, approximately 95% of engineering-intending students who initially place below calculus are from in-state. The “Statewide Coalition: Supporting Underrepresented Populations in Precalculus through Organizational Redesign Toward Engineering Diversity (SC:SUPPORTED),” a Design and Development Launch Pilot funded under the National Science Foundation INCLUDES program, is a coalition of secondary districts and post-secondary institutions throughout South Carolina, joining together to address the systemic issue of mathematical preparation for engineering-intending students. First year results include an analysis of system-wide data to identify prevalent educational pathways within the state, and the mathematical milestones along those pathways taken by engineering-intending students. Using individual data for all 21,656 first-year students in engineering-related fields enrolled in a public post-secondary institution in the state, we identified specific pathways with high rates of placement in or above calculus, pathways with balanced rates of placement in/below calculus, pathways with high rates of placement below calculus, and ‘missing’ pathways, defined as those which produce disproportionately few engineering-intending students [5]. For example, rates of placement in or above calculus among engineering majors ranged from below 17% in eight counties of origin to nearly 100% in four counties of origin. First-year results also included analysis of qualitative data from focus groups conducted at key points along each pathway category to identify factors that do not readily appear in institutional data (e.g., impact of guidance counselor recommendations in selection of last high school math course taken). Broad themes emerging from the focus groups provided additional insight into potential interventions at multiple points along educational pathways. Focus group data are contributing to the development of a survey to be administered in Year 2 to all post-secondary engineering majors statewide, with the goal of creating structural equation models of the factors leading to placement at or below the calculus level upon entry into an engineering major. These models will then allow us to design targeted interventions at points of maximal potential impact. 
    more » « less
  3. Abstract Background

    Increasing interest and participation in engineering is vital if the United States is to create the larger technological and scientific labor force it needs to meet the challenges of the 21st century. Students' pathways into the different engineering majors provide important information for this effort.

    Purpose

    This study addresses which factors across life stages (pre‐high school, high school, and early college) are associated with engineering major choice. The quantitative analysis identifies which demographic characteristics and academic achievement variables are correlated with engineering major choice, whereas the qualitative analysis examines when and why students choose a specific engineering major.

    Methods

    Informed by the life course perspective, this convergent mixed methods research study applies Logit regression and thematic analysis. Data sets include more than 20,000 observations of student‐level academic records (2001–2015) as well as interviews conducted with 20 students at a large, research‐intensive university in the Midwest.

    Results

    Quantitative results indicate that student demographic factors and measures of academic achievement—including passing scores on advanced placement tests, scholastic aptitude test scores, and high school and college first‐year grade point averages—are associated with engineering major choice. Qualitative findings show that across the life stages, the source of social influence in engineering major choice varies; while family and teachers play larger roles before and during high school, peers and university personnel play larger roles in early college.

    Conclusion

    The conceptual model comprehensively synthesizes the key factors associated with engineering major choice, highlighting the importance of demographic factors, academic achievement, social networks, and access to role models from pre‐high school, high school, and early college.

     
    more » « less
  4. This study explored the implementation of a novel approach to dual credit referred to as the facilitator model that can be suited for STEM-focused coursework such as courses focused on engineering, design, technology, and innovation. Unlike other models, high school teachers facilitate the implementation of a college course for both high school and college credit in collaboration with a university instructor who evaluates student learning. This novel approach was specifically implemented for an open-ended undergraduate design course within an engineering technology college, similar to many first-year engineering course experiences that emphasize project based learning, from a large research-intensive public university. For this study, the facilitator model was piloted with five high school teachers as facilitators of an undergraduate design course for dual credit at two innovative, STEM-focused public charter schools. The qualitative research design focused on examining (1) teacher needs while implementing, and perceptions of, the dual credit facilitator model for an undergraduate design course in urban public charter schools and (2) the impact of this model on student learning. This study included the collection and analysis of over 90 h of interviews, focus groups, surveys, and observations. Results provide a promising outlook for the use of the facilitator model when delivering dual credit content that is open ended and within the context of design, technology, and engineering by (1) navigating multiple institutional policies and processes related to dual-credit implementation, (2) providing ongoing support and fostering collaboration between high schools and university, (3) enabling students to earn directly transcripted college credits that count as a required course toward degree completion, and (4) increasing affordability and access to dual credit coursework. These potential advantages over other dual credit models can help address barriers that may limit access to dual credit coursework, specifically for underserved high schools. 
    more » « less
  5. null (Ed.)
    The Statewide Coalition Supporting Underrepresented Populations in Precalculus through Organizational Redesign Toward Engineering Diversity (SC:SUPPORTED), a Design and Development Launch Pilot funded under the National Science Foundation INCLUDES program, is a coalition of secondary districts and postsecondary institutions throughout South Carolina that have joined together to address the systemic issue of mathematics preparation and placement for students pursuing or intending to pursue engineering degrees. In Year One of the project, we used individual data for all 21,656 first-year STEM-intending students enrolled in a public two- or four-year postsecondary institution with ABET-accredited engineering programs in the state to identify specific pathways with high rates of placement in or above calculus, pathways with balanced rates of placement in/below calculus, pathways with high rates of placement below calculus, and “missing” pathways: ones that produced disproportionately few engineering-intending students. From the pathways analysis we identified target locations for focus groups to identify factors that do not readily appear in institutional data, such as the impact of guidance counselor recommendations in a student’s selection of their last high school math course taken. Broad themes emerging from the focus groups provided additional insight into potential interventions at multiple points along educational pathways. These themes also contributed to both the development of a survey for statewide administration and a follow-up study to develop profiles of school district decision-making with direct and indirect effects on mathematics preparation and major selection of students from that district. As we conclude Year Two of our launch pilot, in this paper we integrate a subset of results from different aspects of the project to address both quantitative impact and qualitative context of the roles that poverty and guidance play in gaining access to engineering in South Carolina. 
    more » « less