skip to main content

Title: Internal shocks from variable outflows in classical novae

We present one-dimensional hydrodynamical simulations including radiative losses, of internal shocks in the outflows from classical novae, to explore the role of shocks in powering multiwavelength emission from radio to gamma-ray wavelengths. Observations support a picture in which the initial phases of some novae generate a slow, equatorially focused outflow (directly from the outer Lagrange point, or from a circumbinary disc), which then transitions to, or is overtaken by, a faster more isotropic outflow from the white dwarf which collides and shocks the slower flow, powering gamma-ray and optical emission through reprocessing by the ejecta. However, the common occurrence of multiple peaks in nova light curves suggests that the outflow’s acceleration need not be monotonic, but instead can involve successive transitions between ‘fast’ and ‘slow’ modes. Such a time-fluctuating outflow velocity naturally can reproduce several observed properties of nova, such as correlated gamma-ray and optical flares, expansion of the photosphere coincident with (though lagging slightly) the peak flare luminosity, and complex time evolution of spectral lines (including accelerating, decelerating, and merging velocity components). While the shocks are still deeply embedded during the gamma-ray emission, the onset of ∼keV X-ray and ∼10 GHz radio synchrotron emission is typically delayed until the more » forward shock of the outermost monolithic shell (created by merger of multiple internal shock-generated shells) reaches a sufficiently low column through the dense external medium generated by the earliest phase of the outburst.

« less
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 4232-4246
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. We survey our understanding of classical novae—nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: ▪  The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. ▪  The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. ▪  The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. ▪  Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantlymore »to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients.« less
  2. ABSTRACT X-ray observations of shocked gas in novae can provide a useful probe of the dynamics of the ejecta. Here we report on X-ray observations of the nova V959 Mon, which was also detected in GeV gamma-rays with the Fermi satellite. We find that the X-ray spectra are consistent with a two-temperature plasma model with non-solar abundances. We interpret the X-rays as due to shock interaction between the slow equatorial torus and the fast polar outflow that were inferred from radio observations of V959 Mon. We further propose that the hotter component, responsible for most of the flux, is from the reverse shock driven into the fast outflow. We find a systematic drop in the column density of the absorber between days 60 and 140, consistent with the expectations for such a picture. We present intriguing evidence for a delay of around 40 d in the expulsion of the ejecta from the central binary. Moreover, we infer a relatively small (a few times 10−6 M⊙) ejecta mass ahead of the shock, considerably lower than the mass of 104 K gas inferred from radio observations. Finally, we infer that the dominant X-ray shock was likely not radiative at the time of our observations, andmore »that the shock power was considerably higher than the observed X-ray luminosity. It is unclear why high X-ray luminosity, closer to the inferred shock power, is never seen in novae at early times, when the shock is expected to have high enough density to be radiative.« less
  3. Abstract

    Tight binary or multiple-star systems can interact through mass transfer and follow vastly different evolutionary pathways than single stars. The star TYC 2597-735-1 is a candidate for a recent stellar merger remnant resulting from a coalescence of a low-mass companion with a primary star a few thousand years ago. This violent event is evident in a conical outflow (“Blue Ring Nebula”) emitting in UV light and surrounded by leading shock filaments observed in Hαand UV emission. From Chandra data, we report the detection of X-ray emission from the location of TYC 2597-735-1 with a luminositylog(LX/Lbol)=5.5. Together with a previously reported period of ~14 days, this indicates ongoing stellar activity and the presence of strong magnetic fields on TYC 2597-735-1. Supported by stellar evolution models of merger remnants, we interpret the inferred stellar magnetic field as dynamo action associated with a newly formed convection zone in the atmosphere of TYC 2597-735-1, though internal shocks at the base of an accretion-powered jet cannot be ruled out. We speculate that this object will evolve into an FK Com–type source, i.e., a class of rapidly spinning magnetically active stars for which a merger origin has beenmore »proposed but for which no relic accretion or large-scale nebula remains visible. We also detect likely X-ray emission from two small regions close to the outer shock fronts in the Blue Ring Nebula, which may arise from inhomogeneities either in the circumstellar medium or in the mass and velocity distribution in the merger-driven outflow.

    « less
  4. Abstract

    Mounting evidence suggests that luminous fast blue optical transients (LFBOTs) are powered by a compact object, launching an asymmetric and fast outflow responsible for the radiation observed in the ultraviolet, optical, infrared, radio, and X-ray bands. Proposed scenarios aiming to explain the electromagnetic emission include an inflated cocoon, surrounding a jet choked in the extended stellar envelope. Alternatively, the observed radiation may arise from the disk formed by the delayed merger of a black hole with a Wolf–Rayet star. We explore the neutrino production in these scenarios, i.e., internal shocks in a choked jet and interaction between the outflow and the circumstellar medium (CSM). If observed on axis, the choked jet provides the dominant contribution to the neutrino fluence. Intriguingly, the IceCube upper limit on the neutrino emission inferred from the closest LFBOT, AT2018cow, excludes a region of the parameter space otherwise allowed by electromagnetic observations. After correcting for the Eddington bias on the observation of cosmic neutrinos, we conclude that the emission from an on-axis choked jet and CSM interaction is compatible with the detection of two track-like neutrino events observed by the IceCube Neutrino Observatory in coincidence with AT2018cow, and otherwise considered to be of atmospheric origin.more »While the neutrino emission from LFBOTs does not constitute the bulk of the diffuse background of neutrinos observed by IceCube, the detection prospects of nearby LFBOTs with IceCube and the upcoming IceCube-Gen2 are encouraging. Follow-up neutrino searches will be crucial for unraveling the mechanism powering this emergent transient class.

    « less
  5. ABSTRACT V445 Puppis is the only helium nova observed to date; its eruption in late 2000 showed high velocities up to 8500 km s−1, and a remarkable bipolar morphology cinched by an equatorial dust disc. Here we present multifrequency radio observations of V445 Pup obtained with the Very Large Array (VLA) spanning 1.5–43.3 GHz, and between 2001 January and 2008 March (days ∼89–2700 after eruption). The radio light curve is dominated by synchrotron emission over these 7 yr, and shows four distinct radio flares. Resolved radio images obtained in the VLA’s A configuration show that the synchrotron emission hugs the equatorial disc, and comparisons to near-IR images of the nova clearly demonstrate that it is the densest ejecta – not the fastest ejecta – that are the sites of the synchrotron emission in V445 Pup. The data are consistent with a model where the synchrotron emission is produced by a wind from the white dwarf impacting the dense equatorial disc, resulting in shocks and particle acceleration. The individual synchrotron flares may be associated with density enhancements in the equatorial disc and/or velocity variations in the wind from the white dwarf. This overall scenario is similar to a common picture of shock production in hydrogen-rich classical novae,more »but V445 Pup is remarkable in that these shocks persist for almost a decade, much longer than the weeks or months for which shocks are typically observed in classical novae.« less