skip to main content

Title: Internal shocks from variable outflows in classical novae

We present one-dimensional hydrodynamical simulations including radiative losses, of internal shocks in the outflows from classical novae, to explore the role of shocks in powering multiwavelength emission from radio to gamma-ray wavelengths. Observations support a picture in which the initial phases of some novae generate a slow, equatorially focused outflow (directly from the outer Lagrange point, or from a circumbinary disc), which then transitions to, or is overtaken by, a faster more isotropic outflow from the white dwarf which collides and shocks the slower flow, powering gamma-ray and optical emission through reprocessing by the ejecta. However, the common occurrence of multiple peaks in nova light curves suggests that the outflow’s acceleration need not be monotonic, but instead can involve successive transitions between ‘fast’ and ‘slow’ modes. Such a time-fluctuating outflow velocity naturally can reproduce several observed properties of nova, such as correlated gamma-ray and optical flares, expansion of the photosphere coincident with (though lagging slightly) the peak flare luminosity, and complex time evolution of spectral lines (including accelerating, decelerating, and merging velocity components). While the shocks are still deeply embedded during the gamma-ray emission, the onset of ∼keV X-ray and ∼10 GHz radio synchrotron emission is typically delayed until the forward shock of the outermost monolithic shell (created by merger of multiple internal shock-generated shells) reaches a sufficiently low column through the dense external medium generated by the earliest phase of the outburst.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 4232-4246
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 2021 August, the Fermi Large Area Telescope, H.E.S.S., and MAGIC detected GeV and TeVγ-ray emission from an outburst of recurrent nova RS Ophiuchi. This detection represents the first very high-energyγ-rays observed from a nova, and it opens a new window to study particle acceleration. Both H.E.S.S. and MAGIC described the observedγ-rays as arising from a single, external shock. In this paper, we perform detailed, multi-zone modeling of RS Ophiuchi’s 2021 outburst, including a self-consistent prescription for particle acceleration and magnetic field amplification. We demonstrate that, contrary to previous work, a single shock cannot simultaneously explain RS Ophiuchi’s GeV and TeV emission, in particular the spectral shape and distinct light-curve peaks. Instead, we put forward a model involving multiple shocks that reproduces the observedγ-ray spectrum and temporal evolution. The simultaneous appearance of multiple distinct velocity components in the nova optical spectrum over the first several days of the outburst supports the presence of distinct shocks, which may arise either from the strong latitudinal dependence of the density of the external circumbinary medium (e.g., in the binary equatorial plane versus the poles) or due to internal collisions within the white dwarf ejecta (which power theγ-ray emission in classical novae).

    more » « less

    The discovery that many classical novae produce detectable GeV γ-ray emission has raised the question of the role of shocks in nova eruptions. Here, we use radio observations of nova V809 Cep (nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about 6 weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times – more than 6 months or so into the eruption – is consistent with thermal emission from $10^{-4}\, {\rm M}_\odot$ of freely expanding, 104 K ejecta. At 4.6 and 7.4 GHz, however, the radio light curves display an initial early-time peak 76 d after the discovery of the eruption in the optical (t0). The brightness temperature at 4.6 GHz on day 76 was greater than 105 K, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free–free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.

    more » « less
  3. We survey our understanding of classical novae—nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: ▪  The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. ▪  The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. ▪  The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. ▪  Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients. 
    more » « less
  4. null (Ed.)
    ABSTRACT X-ray observations of shocked gas in novae can provide a useful probe of the dynamics of the ejecta. Here we report on X-ray observations of the nova V959 Mon, which was also detected in GeV gamma-rays with the Fermi satellite. We find that the X-ray spectra are consistent with a two-temperature plasma model with non-solar abundances. We interpret the X-rays as due to shock interaction between the slow equatorial torus and the fast polar outflow that were inferred from radio observations of V959 Mon. We further propose that the hotter component, responsible for most of the flux, is from the reverse shock driven into the fast outflow. We find a systematic drop in the column density of the absorber between days 60 and 140, consistent with the expectations for such a picture. We present intriguing evidence for a delay of around 40 d in the expulsion of the ejecta from the central binary. Moreover, we infer a relatively small (a few times 10−6 M⊙) ejecta mass ahead of the shock, considerably lower than the mass of 104 K gas inferred from radio observations. Finally, we infer that the dominant X-ray shock was likely not radiative at the time of our observations, and that the shock power was considerably higher than the observed X-ray luminosity. It is unclear why high X-ray luminosity, closer to the inferred shock power, is never seen in novae at early times, when the shock is expected to have high enough density to be radiative. 
    more » « less
  5. Abstract

    The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission.

    more » « less