skip to main content


Title: Evidence for Multiple Shocks from the γ-Ray Emission of RS Ophiuchi
Abstract

In 2021 August, the Fermi Large Area Telescope, H.E.S.S., and MAGIC detected GeV and TeVγ-ray emission from an outburst of recurrent nova RS Ophiuchi. This detection represents the first very high-energyγ-rays observed from a nova, and it opens a new window to study particle acceleration. Both H.E.S.S. and MAGIC described the observedγ-rays as arising from a single, external shock. In this paper, we perform detailed, multi-zone modeling of RS Ophiuchi’s 2021 outburst, including a self-consistent prescription for particle acceleration and magnetic field amplification. We demonstrate that, contrary to previous work, a single shock cannot simultaneously explain RS Ophiuchi’s GeV and TeV emission, in particular the spectral shape and distinct light-curve peaks. Instead, we put forward a model involving multiple shocks that reproduces the observedγ-ray spectrum and temporal evolution. The simultaneous appearance of multiple distinct velocity components in the nova optical spectrum over the first several days of the outburst supports the presence of distinct shocks, which may arise either from the strong latitudinal dependence of the density of the external circumbinary medium (e.g., in the binary equatorial plane versus the poles) or due to internal collisions within the white dwarf ejecta (which power theγ-ray emission in classical novae).

 
more » « less
Award ID(s):
2010240 1909778 2009326 1751874
NSF-PAR ID:
10408734
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
947
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 70
Size(s):
["Article No. 70"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Shocks in γ-ray emitting classical novae are expected to produce bright thermal and non-thermal X-rays. We test this prediction with simultaneous NuSTAR and Fermi/LAT observations of nova V906 Car, which exhibited the brightest GeV γ-ray emission to date. The nova is detected in hard X-rays while it is still γ-ray bright, but contrary to simple theoretical expectations, the detected 3.5–78 keV emission of V906 Car is much weaker than the simultaneously observed >100 MeV emission. No non-thermal X-ray emission is detected, and our deep limits imply that the γ-rays are likely hadronic. After correcting for substantial absorption (NH ≈ 2 × 1023 cm−2), the thermal X-ray luminosity (from a 9 keV optically thin plasma) is just ∼2 per cent of the γ-ray luminosity. We consider possible explanations for the low thermal X-ray luminosity, including the X-rays being suppressed by corrugated, radiative shock fronts or the X-rays from the γ-ray producing shock are hidden behind an even larger absorbing column (NH > 1025 cm−2). Adding XMM–Newton and Swift/XRT observations to our analysis, we find that the evolution of the intrinsic X-ray absorption requires the nova shell to be expelled 24 d after the outburst onset. The X-ray spectra show that the ejecta are enhanced in nitrogen and oxygen, and the nova occurred on the surface of a CO-type white dwarf. We see no indication of a distinct supersoft phase in the X-ray light curve, which, after considering the absorption effects, may point to a low mass of the white dwarf hosting the nova. 
    more » « less
  2. Abstract

    GeV and TeV emission from the forward shocks of supernova remnants (SNRs) indicates that they are capable particle accelerators, making them promising sources of Galactic cosmic rays (CRs). However, it remains uncertain whether thisγ-ray emission arises primarily from the decay of neutral pions produced by very-high-energy hadrons, or from inverse-Compton and/or bremsstrahlung emission from relativistic leptons. By applying a semi-analytic approach to non-linear diffusive shock acceleration, and calculating the particle and photon spectra produced in different environments, we parameterize the relative strength of hadronic and leptonic emission. We show that even if CR acceleration is likely to occur in all SNRs, the observed photon spectra may primarily reflect the environment surrounding the SNR: the emission is expected to look hadronic unless the ambient density is particularly low (with proton number density ≲0.1 cm−3) or the photon background is enhanced with respect to average Galactic values (with radiation energy densityurad≳ 10 eV cm−3). We introduce a hadronicity parameter to characterize how hadronic or leptonic we expect a source to look based on its environment, which can be used to guide the interpretation of currentγ-ray observations and the detection of high-energy neutrinos from SNRs.

     
    more » « less
  3. Abstract

    This paper reports on theγ-ray properties of the 2018 Galactic nova V392 Per, spanning photon energies ∼0.1 GeV–100 TeV by combining observations from the Fermi Gamma-ray Space Telescope and the HAWC Observatory. As one of the most rapidly evolvingγ-ray signals yet observed for a nova, GeVγ-rays with a power-law spectrum with an index Γ = 2.0 ± 0.1 were detected over 8 days following V392 Per’s optical maximum. HAWC observations constrain the TeVγ-ray signal during this time and also before and after. We observe no statistically significant evidence of TeVγ-ray emission from V392 Per, but present flux limits. Tests disfavor the extension of the Fermi Large Area Telescope spectrum to energies above 5 TeV by 2 standard deviations (95%) or more. We fit V392 Per’s GeVγ-rays with hadronic acceleration models, incorporating optical observations, and compare the calculations with HAWC limits.

     
    more » « less
  4. ABSTRACT MAXI J1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to ∼500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 1011 and 1013 cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA. 
    more » « less
  5. ABSTRACT

    The discovery that many classical novae produce detectable GeV γ-ray emission has raised the question of the role of shocks in nova eruptions. Here, we use radio observations of nova V809 Cep (nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about 6 weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times – more than 6 months or so into the eruption – is consistent with thermal emission from $10^{-4}\, {\rm M}_\odot$ of freely expanding, 104 K ejecta. At 4.6 and 7.4 GHz, however, the radio light curves display an initial early-time peak 76 d after the discovery of the eruption in the optical (t0). The brightness temperature at 4.6 GHz on day 76 was greater than 105 K, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free–free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.

     
    more » « less