The work clarifies several key questions in shape memory research that have eluded previous studies. The f indings show that dislocation slip emanates at austenite-martensite interfaces during unloading and aligns with the internal twin boundary interface of martensite. It was observed that the type II internal twins of the martensite become parallel dislocations in the austenite. During reloading, these dislocations act as nucleation sites for the martensitic twins, reducing the nucleation barrier and the transformation stress. The precipitates facilitate martensite nucleation but also act as an obstacle to martensite front motion, restrict detwinning, and pin the interfacial dislocations during unloading, thereby contributing to residual strains and martensite stabilization. Martensite nucleation is not suppressed by the size of the thin film, which is of the order of 85 to 105 nanometers thick, and repeated transformation occurred cycle after cycle. Single crystals deformed in the <101> LD exhibited the best recoverability of up to 5.5 % and tensile stresses of up to 1.4 GPa. It was demonstrated for the first time that, when favorably oriented, Ni 4 Ti 3 precipitates undergo a reversible phase transformation to R-phase and can accommodate up to 4 % reversible strains.
more »
« less
Microstructure Refinement Strategies in Carburized Steel
Microstructure refinement strategies in simulated carburized microstructures were evaluated because of their potential for improving the fatigue performance of case carburized components. Commercial 52100 steel was used to simulate the high carbon content in the case. Specimens were subjected to various thermal treatments in a quenching dilatometer. Reheating cycles to austenitizing temperatures were evaluated with respect to both prior austenite grain size (PAGS) and associated martensite and retained austenite (RA) refinement. Quantitative stereological measurements were performed to evaluate the micro-geometry of plate martensite and the size distribution of RA regions. Decreasing the reheating temperature resulted in finer PAGS, and multiple reheating cycles resulted in a more narrow PAGS distribution. Refinement in PAGS led to a reduction in martensite plate size and finer distribution of RA. Additionally, interrupted quenching below MS temperature was evaluated. This processing route results in a refinement of martensite plates and more stable RA. The stabilization of austenite may be mechanical or chemical in nature, owing to deformation of austenite during primary transformation, or due to partitioning of carbon into austenite similar to quenching and partitioning steels.
more »
« less
- Award ID(s):
- 1728007
- PAR ID:
- 10127672
- Date Published:
- Journal Name:
- Proceedings of the 30th ASM Heat Treating Society Conference
- Page Range / eLocation ID:
- 129-135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades.more » « less
-
The newly developed FeMnAlNiTi shape memory alloy (SMA) holds significant promise due to its desirable properties including ease of processing, room temperature superelasticity, a wide superelastic window of operation, and high transformation stress levels. In this study, we report single crystals with tensile axis near h123i exhibiting transformation strains of 9% with a high trans- formation stress of 700 MPa. The functional performance revealed excellent recovery of 98% of the applied strain in an incremental strain test for each of the 40 applied cycles. Concomitantly, the total residual strain increased after each cycle. Accumulation of residual martensite is observed possibly due to pinning of austenite/martensite (A/M) interface. Subsequently, under structural fatigue loading with a constant strain amplitude of 1%, the recoverable strains saturate around 1.15% in local residual martensite domains. Intermittent enhancement of recoverable strains is observed due to transformation triggered in previously untransformed domains. Eventually, fatigue failure occur- red after 2046 cycles and the dominant mechanism for failure was microcrack initiation and coalescence along the A/M interface. Thus, it is concluded that interfacial dislo- cations, which play a crucial role in the superelastic (SE) functionality, invariably affect the structural fatigue per- formance by acting as the weakest link in the microstructure.more » « less
-
Daehn G., Cao J. (Ed.)Controlling the microstructure of components is of interest to achieve optimal final part properties, i.e., materials by design. The manufacturing process itself can affect a material’s characteristics by changing the microstructure. For example, past research has shown that austenite to martensite phase transformation in stainless steel occurs during deformation. Temperature is known to have a significant influence on this phenomenon. In this paper, the effect of temperature on the austenitic to martensite phase transformation in SS 316L under uniaxial tension is investigated. Both a cooling system and a heat exchanger were employed in a uniaxial tension experimental setup to control the temperature. Tensile specimens were strained to fracture at four temperatures of −15, 0, 10, and 20 °C. Digital imaging correlation (DIC) and a thermal imaging camera were used for tests at 0 °C and above to capture strain and temperature data, respectively. Strain and temperature data could not be obtained at −15 °C due to the DIC paint flaking during testing. X-ray diffraction was used to measure the volume fraction of martensite in both the as-received and the tensile-tested materials.more » « less
-
Uniaxial tension is a universal material characterization experiment. However, studies have shown that increased formability can be achieved with simultaneous bending and unbending of the material. This so-called continuous bending under tension process is an example of bending stress superposition to a uniaxial tension process. In this research, experiments are conducted on stainless steel 304 to investigate the effects of bending stress superposition on the austenite to martensite phase transformation. Two vortex tubes are mounted to the carriage of the machine and used to decrease the temperature in a localized region of the specimen to evaluate two temperature conditions. The in-situ strain and temperature fields are captured using 3D digital image correlation and infrared cameras. The deformation induced α′ -martensite volume fraction is measured at regular intervals along the deformed gauge length using a Feritscope. The number of cycles that the rollers traverse the gauge length, corresponding to the strain level, is also varied to create five conditions. The deformed specimens revealed heterogeneous martensite transformation along the gauge length due to the non-uniform temperature fields observed for each test condition. Decreasing the temperature and increasing the number of cycles led to the highest amount of phase transformation for this bending-tension superposed process. These results provide insight on how stress superposition can be applied to vary the phase transformation in more complex manufacturing processes, such as incremental forming, which combines bending, tension, and shear deformation.more » « less
An official website of the United States government

