skip to main content


Title: The Effect of Temperature on the Strain-Induced Austenite to Martensite Transformation in SS 316L During Uniaxial Tension
Controlling the microstructure of components is of interest to achieve optimal final part properties, i.e., materials by design. The manufacturing process itself can affect a material’s characteristics by changing the microstructure. For example, past research has shown that austenite to martensite phase transformation in stainless steel occurs during deformation. Temperature is known to have a significant influence on this phenomenon. In this paper, the effect of temperature on the austenitic to martensite phase transformation in SS 316L under uniaxial tension is investigated. Both a cooling system and a heat exchanger were employed in a uniaxial tension experimental setup to control the temperature. Tensile specimens were strained to fracture at four temperatures of −15, 0, 10, and 20 °C. Digital imaging correlation (DIC) and a thermal imaging camera were used for tests at 0 °C and above to capture strain and temperature data, respectively. Strain and temperature data could not be obtained at −15 °C due to the DIC paint flaking during testing. X-ray diffraction was used to measure the volume fraction of martensite in both the as-received and the tensile-tested materials.  more » « less
Award ID(s):
1757371
NSF-PAR ID:
10277187
Author(s) / Creator(s):
Editor(s):
Daehn G., Cao J.
Date Published:
Journal Name:
Forming the Future. The Minerals, Metals & Materials Series
Page Range / eLocation ID:
1853-1862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A gas metal-directed energy deposition process was used to fabricate builds using two commercial weld fillers used in power generation applications, 16-8-2 and 316H. Microstructure stability and mechanical properties were investigated through room-temperature and elevated temperature tensile testing and creep testing at 650°C, 750°C, and 825°C. 16-8-2 exhibited reduced austenite stability which resulted in athermal martensite formation after aging at 650°C for 1000 h and strain-induced martensite formation during room-temperature tensile testing. 316H exhibited relatively higher austenite stability due to increased alloying content, resulting in no athermal martensite or strain-induced martensite. Due to lower austenite stability, ferrite formed during creep at 650°C in 16-8-2, which resulted in reduced creep life and lower creep ductility compared to 316H. At 750°C and 825°C, when ferrite is no longer thermodynamically stable, 16-8-2 exhibited longer creep life and similar creep ductility as 316H. The formation of ferrite in 16-8-2 appears to have a greater impact on creep performance than the formation of embrittling topologically close-packed phases like the σ phase, as 316H exhibited superior creep performance while predicted to form 14 vol.% σ phase at 650°C.

     
    more » « less
  2. Uniaxial tension is a universal material characterization experiment. However, studies have shown that increased formability can be achieved with simultaneous bending and unbending of the material. This so-called continuous bending under tension process is an example of bending stress superposition to a uniaxial tension process. In this research, experiments are conducted on stainless steel 304 to investigate the effects of bending stress superposition on the austenite to martensite phase transformation. Two vortex tubes are mounted to the carriage of the machine and used to decrease the temperature in a localized region of the specimen to evaluate two temperature conditions. The in-situ strain and temperature fields are captured using 3D digital image correlation and infrared cameras. The deformation induced α′ -martensite volume fraction is measured at regular intervals along the deformed gauge length using a Feritscope. The number of cycles that the rollers traverse the gauge length, corresponding to the strain level, is also varied to create five conditions. The deformed specimens revealed heterogeneous martensite transformation along the gauge length due to the non-uniform temperature fields observed for each test condition. Decreasing the temperature and increasing the number of cycles led to the highest amount of phase transformation for this bending-tension superposed process. These results provide insight on how stress superposition can be applied to vary the phase transformation in more complex manufacturing processes, such as incremental forming, which combines bending, tension, and shear deformation. 
    more » « less
  3. In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage. 
    more » « less
  4. In this work a transformation strain gradient enhancement is introduced into a phenomenological constitutive model for the pseudoelastic behavior of shape memory alloys. The constitutive model is able to capture several unique features of the constitutive response of these materials during the transformation between austenite and martensite during the pseudoelastic response. These features include the asymmetry in the initial transformation stresses in tension versus compression, the asymmetry in the transformation strains in tension and compression, and finally the asymmetry in the hardening behavior in tension and compression. In fact, experiments have shown that untrained NiTi exhibits hardening during its transformation in compression, but softening for tensile loading. It is this softening behavior that motivates the need for the introduction of the transformation strain gradient into the constitutive modeling. Transformation strain gradient effects are introduced via a phase variable that describes the extent of transformation. The free energy of the material then depends on gradients of the phase variable, which introduces a material length scale into the theory. The governing equation for the phase variable is developed from a microforce balance and continuum thermodynamics analysis. The model is implemented in the commercial finite element software Abaqus through user defined subroutines and several numerical simulations are performed to illustrate the model response and lack of numerical mesh-dependency of the results. 
    more » « less
  5. Ni–Mn–Ga Heusler alloys are multifunctional materials that demonstrate macroscopic strain under an externally applied magnetic field through the motion of martensite twin boundaries within the microstructure. This study sought to comprehensively characterize the microstructural, mechanical, thermal, and magnetic properties near the solidus in binder-jet 3D printed 14M Ni50Mn30Ga20. Neutron diffraction data were analyzed to identify the martensite modulation and observe the grain size evolution in samples sintered at temperatures of 1080 °C and 1090 °C. Large clusters of high neutron-count pixels in samples sintered at 1090 °C were identified, suggesting Bragg diffraction of large grains (near doubling in size) compared to 1080 °C sintered samples. The grain size was confirmed through quantitative stereology of polished surfaces for differently sintered and heat-treated samples. Nanoindentation testing revealed a greater resistance to plasticity and a larger elastic modulus in 1090 °C sintered samples (relative density ~95%) compared to the samples sintered at 1080 °C (relative density ~80%). Martensitic transformation temperatures were lower for samples sintered at 1090 °C than 1080 °C, though a further heat treatment step could be added to tailor the transformation temperature. Microstructurally, twin variants ≤10 μm in width were observed and the presence of magnetic anisotropy was confirmed through magnetic force microscopy. This study indicates that a 10 °C sintering temperature difference can largely affect the microstructure and mechanical properties (including elastic modulus and hardness) while still allowing for the presence of magnetic twin variants in the resulting modulated martensite. 
    more » « less