skip to main content

Title: The Limits to Adaptation in Restored Ecosystems and How Management Can Help Overcome Them
Adaptation drives the diversity of form and function observed in nature and is key to population persistence. Yet, adaptation can be limited by a lack of genetic variation, trade-offs, small population size, and constraints imposed by coevolving interacting species. These limits may be particularly important to the colonizing populations in restored ecosystems, such as native prairies restored through seed sowing. Here, we discuss how constraints to adaptation are likely to play out in restored prairie ecosystems and how management decisions, such as seed mix composition, prescribed fire, and strategic site selection, might be used to overcome some of these constraints. Although data are still limited, recent work suggests that restored prairie populations likely face strong selection and that promoting the potential for adaptation in these systems may be necessary for restoring populations both now and in the face of further global change.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annals of the Missouri Botanical Garden
Page Range / eLocation ID:
441 to 454
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    When populations colonize new habitats, they are likely to experience novel environmental conditions, and as a consequence may experience strong selection. While selection and the resulting evolutionary responses may have important implications for establishment success in colonizing populations, few studies have estimated selection in such scenarios. Here we examined evidence of selection in recently established plant populations in two prairie restorations in close proximity (<15 km apart) using two approaches: (1) we tested for evidence of past selection on a suite of traits in twoChamaecrista fasciculatapopulations by comparing the restored populations to each other and their shared source population in common gardens to quantify evolutionary responses and (2) we measured selection in the field. We found evidence of past selection on flowering time, specific leaf area, and root nodule production in one of the populations, but detected contemporary selection on only one trait (plant height). Our findings demonstrate that while selection can occur in colonizing populations, resulting in significant trait differences between restored populations in fewer than six generations, evolutionary responses differ across even nearby populations sown with the same source population. Because contemporary measures of selection differed from evolutionary responses to past selection, our findings also suggest that selection likely differs over the early stages of succession that characterize young prairies.

    more » « less
  2. Abstract

    Restoration in this era of climate change comes with a new challenge: anticipating how best to restore populations to persist under future climate conditions. Specifically, it remains unknown whether locally adapted or warm‐adapted seeds best promote native plant community restoration in the warmer conditions predicted in the future and whether local or warm‐adapted soil microbial communities could mitigate plant responses to warming. This may be especially relevant for biomes spanning large climatic gradients, such as the North American tallgrass prairie. Here, we used a short‐term mesocosm experiment to evaluate how seed provenances (Local Northern region, Non‐local Northern region, Non‐local Southern region) of 10 native tallgrass prairie plants (four forbs, two legumes, and four grasses) responded to warmer conditions predicted in the future and how soil microbial communities from those three regions influenced these responses. Warming and seed provenance affected plant community composition and warming decreased plant diversity for all three seed provenances. Plant species varied in their individual responses to warming, and across species, we detected no consistent differences among the three provenances in terms of biomass response to warming and few strong effects of soil provenance. Our work provides evidence that warming, in part, may reduce plant diversity and affect restored prairie composition. Because the southern provenance did not consistently outperform others under warming and we found little support for the “local is best” paradigm currently dominating restoration practice, identifying appropriate seed provenances to promote restoration success both now and in future warmer environments may be challenging. Due to the idiosyncratic responses across species, we recommend that land managers compare seeds from different regions for each species to determine which seed provenance performs best under warming and in restoration for tallgrass prairies.

    more » « less
  3. Dormancy has repeatedly evolved in plants, animals, and microbes and is hypothesized to facilitate persistence in the face of environmental change. Yet previous experiments have not tracked demography and trait evolution spanning a full successional cycle to ask whether early bouts of natural selection are later reinforced or erased during periods of population dormancy. In addition, it is unclear how well short-term measures of fitness predict long-term genotypic success for species with dormancy. Here, we address these issues using experimental field populations of the plantOenothera biennis, which evolved over five generations in plots exposed to or protected from insect herbivory. While populations existed above ground, there was rapid evolution of defensive and life-history traits, but populations lost genetic diversity and crashed as succession proceeded. After >5 y of seed dormancy, we triggered germination from the seedbank and genotyped >3,000 colonizers. Resurrected populations showed restored genetic diversity that reduced earlier responses to selection and pushed population phenotypes toward the starting conditions of a decade earlier. Nonetheless, four defense and life-history traits remained differentiated in populations with insect suppression compared with controls. These findings capture key missing elements of evolution during ecological cycles and demonstrate the impact of dormancy on future evolutionary responses to environmental change.

    more » « less
  4. Abstract

    Danthonia californicaBolander (Poaceae)is a native perennial bunchgrass commonly used in the restoration of prairie ecosystems in the western United States. Plants of this species simultaneously produce both chasmogamous (potentially outcrossed) and cleistogamous (obligately self‐fertilized) seeds. Restoration practitioners almost exclusively use chasmogamous seeds for outplanting, which are predicted to perform better in novel environments due to their greater genetic diversity. Meanwhile, cleistogamous seeds may exhibit greater local adaptation to the conditions in which the maternal plant exists. We performed a common garden experiment at two sites in the Willamette Valley, Oregon, to assess the influence of seed type and source population (eight populations from a latitudinal gradient) on seedling emergence and found no evidence of local adaptation for either seed type. Cleistogamous seeds outperformed chasmogamous seeds, regardless of whether seeds were sourced directly from the common gardens (local seeds) or other populations (nonlocal seeds). Furthermore, average seed weight had a strong positive effect on seedling emergence, despite the fact that chasmogamous seeds had significantly greater mass than cleistogamous seeds. At one common garden, we observed that seeds of both types sourced from north of our planting site performed significantly better than local or southern‐sourced seeds. We also found a significant seed type and distance‐dependent interaction, with cleistogamous seedling emergence peaking approximately 125 km from the garden. These results suggest that cleistogamous seeds should be considered for greater use inD. californicarestoration.

    more » « less
  5. Evolution by natural selection may be effective enough to allow for recurrent, rapid adaptation to distinct niche environments within a well-mixed population. For this to occur, selection must act on standing genetic variation such that mortality i.e. genetic load, is minimized while polymorphism is maintained. Selection on multiple, redundant loci of small effect provides a potentially inexpensive solution. Yet, demonstrating adaptation via redundant, polygenic selection in the wild remains extremely challenging because low per-locus effect sizes and high genetic redundancy severely reduce statistical power. One approach to facilitate identification of loci underlying polygenic selection is to harness natural replicate populations experiencing similar selection pressures that harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus. F. heteroclitus inhabits salt marsh estuaries that are characterized by high environmental heterogeneity e.g. tidal ponds, creeks, coastal basins. Here, we sample four of these heterogeneous niches (one coastal basin and three replicate tidal ponds) at two time points from among a single, panmictic F. heteroclitus population. We identify 10,861 single nucleotide polymorphisms using a genotyping-by-sequencing approach and quantify temporal allele frequency change within, as well as spatial divergence among subpopulations residing in these niches. We find a significantly elevated number of concordant allele frequency changes among all subpopulations, suggesting ecosystem-wide adaptation to a common selection pressure. Remarkably, we also find an unexpected number of temporal allele frequency changes that generate fine-scale divergence among subpopulations, suggestive of local adaptation to distinct niche environments. Both patterns are characterized by a lack of large-effect loci yet an elevated total number of significant loci. Adaptation via redundant, polygenic selection offers a likely explanation for these patterns as well as a potential mechanism for polymorphism maintenance in the F. heteroclitus system. 
    more » « less