skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 12, 2026

Title: Rhizobia inoculation increases survival, flower production, herbivory, and pollinator visitation in an annual prairie legume
Native legumes are functionally important members of grasslands, but their reintroduction into degraded systems is limited by strong establishment filters. One of these establishment filters might be rhizobia limitation, where legume seedlings are unable to find suitable rhizobia symbionts in grasslands targeted for restoration. To test links between rhizobial inoculation and legume demographic parameters in a grassland restoration context, we evaluated how inoculation with rhizobia altered survival and seed production of a native annual legume (Chamaecrista fasciculata) inoculated with rhizobia and transplanted into a restored prairie. Small mammal herbivory was an important filter affecting survival ofC. fasciculatatransplants, with inoculated plants 81% more likely to be grazed than uninoculated plants. Despite this heavy grazing, plants inoculated with rhizobia survived transplantation 71% more often and, as a result, produced 82% more flowers, experienced 73% more visits by pollinators, and on average produced 220% more seeds. Our results indicate that although herbivory may also shape legume population establishment, at least in some years in some places, rhizobia could alterC. fasciculatainteractions with both herbivores and pollinators and improve population establishment.  more » « less
Award ID(s):
1927671
PAR ID:
10600480
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Restoration of soil microbial communities, and microbial mutualists in particular, is increasingly recognized as critical for the successful restoration of grassland plant communities. Although the positive effects of restoring arbuscular mycorrhizal fungi during the restoration of these systems have been well documented, less is known about the potential importance of nitrogen‐fixing rhizobium bacteria, which associate with legume plant species that comprise an essential part of grassland plant communities, to restoration outcomes. In a series of greenhouse and field experiments, we examined the effects of disturbance on rhizobium communities, how plant interactions with these mutualists changed with disturbance, and whether rhizobia can be used to enhance the establishment of desirable native legume species in degraded grasslands. We found that agricultural disturbance alters rhizobium communities in ways that affect the growth and survival of legume species. Native legume species derived more benefit from interacting with rhizobia than did non‐native species, regardless of rhizobia disturbance history. Additionally, slow‐growing, long‐lived legume species received more benefits from associating with rhizobia from undisturbed native grasslands than from associating with rhizobia from more disturbed sites. Together, this suggests that native rhizobia may be key to enhancing the restoration success of legumes in disturbed habitats. 
    more » « less
  2. Losses of grasslands have been largely attributed to widespread land‐use changes, such as conversion to row‐crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non‐native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non‐native plants. In addition to the direct and indirect effects of non‐native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam‐pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non‐native invasiveBothriochloa bladhii(Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30%B. bladhiicover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non‐native species. 
    more » « less
  3. Soil microbial mutualists like rhizobia bacteria can promote the establishment of rare, late‐successional legumes. Despite restoration efforts, these mutualists are often absent in the microbiome. Therefore, restoring this mutualism by directly inoculating rare legumes with rhizobia mutualists may increase plant establishment. We inoculated seedlings ofAmorpha canescens,Dalea purpurea, andLespedeza capitatawith three strains of species‐specific rhizobia each to investigate how this mutualism would promote growth in the field and in the greenhouse. Because many herbaceous plants are vulnerable to herbivory, we used exclosures for half of our field transplantations to prevent mammalian herbivory. We did not find that rhizobia bacteria directly promoted the growth of our legumes in the field but rather that herbivory and environmental conditions overwhelmed the effects of the rhizobia. Of the plants transplanted, only 17.78% of 180 survived to the end of the growing season, all of which were protected from herbivory. Survival at the end of the growing season was also greater in the northern, drier end of the field site. In the second growing season, plants were more likely to survive in the exclosure treatment, while only four recovered in the open treatment. In the greenhouse, we found increased nodulation with inoculations, supporting the hypothesis that species‐specific mutualists are absent from restoration sites. Though several recent studies have shown that restoring mutualistic interactions has the potential to dramatically improve the outcomes of ecological restoration, our results show that protecting rare species from herbivory after transplantation might achieve greater gains in establishment. 
    more » « less
  4. Abstract When plants colonize new habitats, the novel interactions they form with new mutualists or enemies can immediately affect plant performance. These novel interactions also may provoke rapid evolutionary responses and can be ideal scenarios for investigating how species interactions influence plant evolution.To explore how mutualists influence the evolution of colonizing plant populations, we capitalized on an experiment in which two former agricultural fields were seeded with identical prairie seed mixes in 2010. Six years later, we compared how populations of the legumeChamaecrista fasciculatafrom these sites and their original (shared) source population responded to nitrogen‐fixing rhizobia from the restoration sites in a greenhouse reciprocal cross‐inoculation experiment.We found that the two populations differed both from their original source population and from each other in the benefits they derive from rhizobia, and that one population has evolved reduced allocation to rhizobia (i.e. forms fewer rhizobium‐housing nodules).Synthesis. Our results suggest that these plant populations have evolved different ways of interacting with rhizobia, potentially in response to differences in rhizobium quality between sites. Our study illustrates how microbial mutualists may shape plant evolution in new environments and highlights how variation in microbial mutualists potentially may select for different evolutionary strategies in plant hosts. 
    more » « less
  5. Abstract The plant microbiome is critical to plant health and is degraded with anthropogenic disturbance. However, the value of re‐establishing the native microbiome is rarely considered in ecological restoration. Arbuscular mycorrhizal (AM) fungi are particularly important microbiome components, as they associate with most plants, and later successional grassland plants are strongly responsive to native AM fungi.With five separate sites across the United States, we inoculated mid‐ and late successional plant seedlings with one of three types of native microbiome amendments: (a) whole rhizosphere soil collected from local old‐growth, undisturbed grassland communities in Illinois, Kansas or Oklahoma, (b) laboratory cultured AM fungi from these same old‐growth grassland sites or (c) no microbiome amendment. We also seeded each restoration with a diverse native seed mixture. Plant establishment and growth was followed for three growing seasons.The reintroduction of soil microbiome from native ecosystems improved restoration establishment.Including only native arbuscular mycorrhizal fungal communities produced similar improvements in plant establishment as what was found with whole soil microbiome amendment. These findings were robust across plant functional groups.Inoculated plants (amended with either AM fungi or whole soil) also grew more leaves and were generally taller during the three growing seasons.Synthesis and applications. Our research shows that mycorrhizal fungi can accelerate plant succession and that the reintroduction of both whole soil and laboratory cultivated native mycorrhizal fungi can be used as tools to improve native plant restoration following anthropogenic disturbance. 
    more » « less