Carbohydrate active enzymes (CAZymes) are made by various organisms for complex carbohydrate metabolism. Genome mining of CAZymes has become a routine data analysis in (meta-)genome projects, owing to the importance of CAZymes in bioenergy, microbiome, nutrition, agriculture, and global carbon recycling. In 2012, dbCAN was provided as an online web server for automated CAZyme annotation. dbCAN2 (https://bcb.unl.edu/dbCAN2) was further developed in 2018 as a meta server to combine multiple tools for improved CAZyme annotation. dbCAN2 also included CGC-Finder, a tool for identifying CAZyme gene clusters (CGCs) in (meta-)genomes. We have updated the meta server to dbCAN3 with the following new functions and components: (i) dbCAN-sub as a profile Hidden Markov Model database (HMMdb) for substrate prediction at the CAZyme subfamily level; (ii) searching against experimentally characterized polysaccharide utilization loci (PULs) with known glycan substates of the dbCAN-PUL database for substrate prediction at the CGC level; (iii) a majority voting method to consider all CAZymes with substrate predicted from dbCAN-sub for substrate prediction at the CGC level; (iv) improved data browsing and visualization of substrate prediction results on the website. In summary, dbCAN3 not only inherits all the functions of dbCAN2, but also integrates three new methods for glycan substrate prediction.
Carbohydrate-active enzymes (CAZymes) are extremely important to bioenergy, human gut microbiome, and plant pathogen researches and industries. Here we developed a new amino acid k-mer-based CAZyme classification, motif identification and genome annotation tool using a bipartite network algorithm. Using this tool, we classified 390 CAZyme families into thousands of subfamilies each with distinguishing k-mer peptides. These k-mers represented the characteristic motifs (in the form of a collection of conserved short peptides) of each subfamily, and thus were further used to annotate new genomes for CAZymes. This idea was also generalized to extract characteristic k-mer peptides for all the Swiss-Prot enzymes classified by the EC (enzyme commission) numbers and applied to enzyme EC prediction.
This new tool was implemented as a Python package named eCAMI. Benchmark analysis of eCAMI against the state-of-the-art tools on CAZyme and enzyme EC datasets found that: (i) eCAMI has the best performance in terms of accuracy and memory use for CAZyme and enzyme EC classification and annotation; (ii) the k-mer-based tools (including PPR-Hotpep, CUPP and eCAMI) perform better than homology-based tools and deep-learning tools in enzyme EC prediction. Lastly, we confirmed that the k-mer-based tools have the unique ability to identify the characteristic k-mer peptides in the predicted enzymes.
https://github.com/yinlabniu/eCAMI and https://github.com/zhanglabNKU/eCAMI.
Supplementary data are available at Bioinformatics online.
- Award ID(s):
- 1933521
- PAR ID:
- 10128245
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- ISSN:
- 1367-4803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Summary Bioinformatics applications increasingly rely on ad hoc disk storage of k-mer sets, e.g. for de Bruijn graphs or alignment indexes. Here, we introduce the K-mer File Format as a general lossless framework for storing and manipulating k-mer sets, realizing space savings of 3–5× compared to other formats, and bringing interoperability across tools.
Availability and implementation Format specification, C++/Rust API, tools: https://github.com/Kmer-File-Format/.
Supplementary information Supplementary data are available at Bioinformatics online.
-
Abstract Motivation K-mer-based methods are used ubiquitously in the field of computational biology. However, determining the optimal value of k for a specific application often remains heuristic. Simply reconstructing a new k-mer set with another k-mer size is computationally expensive, especially in metagenomic analysis where datasets are large. Here, we introduce a hashing-based technique that leverages a kind of bottom-m sketch as well as a k-mer ternary search tree (KTST) to obtain k-mer-based similarity estimates for a range of k values. By truncating k-mers stored in a pre-built KTST with a large k=kmax value, we can simultaneously obtain k-mer-based estimates for all k values up to kmax. This truncation approach circumvents the reconstruction of new k-mer sets when changing k values, making analysis more time and space-efficient.
Results We derived the theoretical expression of the bias factor due to truncation. And we showed that the biases are negligible in practice: when using a KTST to estimate the containment index between a RefSeq-based microbial reference database and simulated metagenome data for 10 values of k, the running time was close to 10× faster compared to a classic MinHash approach while using less than one-fifth the space to store the data structure.
Availability and implementation A python implementation of this method, CMash, is available at https://github.com/dkoslicki/CMash. The reproduction of all experiments presented herein can be accessed via https://github.com/KoslickiLab/CMASH-reproducibles.
Supplementary information Supplementary data are available at Bioinformatics online.
-
Abstract The rapid growth of uncharacterized enzymes and their functional diversity urge accurate and trustworthy computational functional annotation tools. However, current state-of-the-art models lack trustworthiness on the prediction of the multilabel classification problem with thousands of classes. Here, we demonstrate that a novel evidential deep learning model (named ECPICK) makes trustworthy predictions of enzyme commission (EC) numbers with data-driven domain-relevant evidence, which results in significantly enhanced predictive power and the capability to discover potential new motif sites. ECPICK learns complex sequential patterns of amino acids and their hierarchical structures from 20 million enzyme data. ECPICK identifies significant amino acids that contribute to the prediction without multiple sequence alignment. Our intensive assessment showed not only outstanding enhancement of predictive performance on the largest databases of Uniprot, Protein Data Bank (PDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG), but also a capability to discover new motif sites in microorganisms. ECPICK is a reliable EC number prediction tool to identify protein functions of an increasing number of uncharacterized enzymes.
-
Abstract Motivation While traditionally utilized for identifying site-specific metabolic activity within a compound to alter its interaction with a metabolizing enzyme, predicting the site-of-metabolism (SOM) is essential in analyzing the promiscuity of enzymes on substrates. The successful prediction of SOMs and the relevant promiscuous products has a wide range of applications that include creating extended metabolic models (EMMs) that account for enzyme promiscuity and the construction of novel heterologous synthesis pathways. There is therefore a need to develop generalized methods that can predict molecular SOMs for a wide range of metabolizing enzymes.
Results This article develops a Graph Neural Network (GNN) model for the classification of an atom (or a bond) being an SOM. Our model, GNN-SOM, is trained on enzymatic interactions, available in the KEGG database, that span all enzyme commission numbers. We demonstrate that GNN-SOM consistently outperforms baseline machine learning models, when trained on all enzymes, on Cytochrome P450 (CYP) enzymes, or on non-CYP enzymes. We showcase the utility of GNN-SOM in prioritizing predicted enzymatic products due to enzyme promiscuity for two biological applications: the construction of EMMs and the construction of synthesis pathways.
Availability and implementation A python implementation of the trained SOM predictor model can be found at https://github.com/HassounLab/GNN-SOM.
Supplementary information Supplementary data are available at Bioinformatics online.