skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The K-mer File Format: a standardized and compact disk representation of sets of k -mers
Abstract SummaryBioinformatics applications increasingly rely on ad hoc disk storage of k-mer sets, e.g. for de Bruijn graphs or alignment indexes. Here, we introduce the K-mer File Format as a general lossless framework for storing and manipulating k-mer sets, realizing space savings of 3–5× compared to other formats, and bringing interoperability across tools. Availability and implementationFormat specification, C++/Rust API, tools: https://github.com/Kmer-File-Format/. Supplementary informationSupplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1453527 1931531
PAR ID:
10371531
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
18
ISSN:
1367-4803
Format(s):
Medium: X Size: p. 4423-4425
Size(s):
p. 4423-4425
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationK-mer-based methods are used ubiquitously in the field of computational biology. However, determining the optimal value of k for a specific application often remains heuristic. Simply reconstructing a new k-mer set with another k-mer size is computationally expensive, especially in metagenomic analysis where datasets are large. Here, we introduce a hashing-based technique that leverages a kind of bottom-m sketch as well as a k-mer ternary search tree (KTST) to obtain k-mer-based similarity estimates for a range of k values. By truncating k-mers stored in a pre-built KTST with a large k=kmax value, we can simultaneously obtain k-mer-based estimates for all k values up to kmax. This truncation approach circumvents the reconstruction of new k-mer sets when changing k values, making analysis more time and space-efficient. ResultsWe derived the theoretical expression of the bias factor due to truncation. And we showed that the biases are negligible in practice: when using a KTST to estimate the containment index between a RefSeq-based microbial reference database and simulated metagenome data for 10 values of k, the running time was close to 10× faster compared to a classic MinHash approach while using less than one-fifth the space to store the data structure. Availability and implementationA python implementation of this method, CMash, is available at https://github.com/dkoslicki/CMash. The reproduction of all experiments presented herein can be accessed via https://github.com/KoslickiLab/CMASH-reproducibles. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract MotivationCarbohydrate-active enzymes (CAZymes) are extremely important to bioenergy, human gut microbiome, and plant pathogen researches and industries. Here we developed a new amino acid k-mer-based CAZyme classification, motif identification and genome annotation tool using a bipartite network algorithm. Using this tool, we classified 390 CAZyme families into thousands of subfamilies each with distinguishing k-mer peptides. These k-mers represented the characteristic motifs (in the form of a collection of conserved short peptides) of each subfamily, and thus were further used to annotate new genomes for CAZymes. This idea was also generalized to extract characteristic k-mer peptides for all the Swiss-Prot enzymes classified by the EC (enzyme commission) numbers and applied to enzyme EC prediction. ResultsThis new tool was implemented as a Python package named eCAMI. Benchmark analysis of eCAMI against the state-of-the-art tools on CAZyme and enzyme EC datasets found that: (i) eCAMI has the best performance in terms of accuracy and memory use for CAZyme and enzyme EC classification and annotation; (ii) the k-mer-based tools (including PPR-Hotpep, CUPP and eCAMI) perform better than homology-based tools and deep-learning tools in enzyme EC prediction. Lastly, we confirmed that the k-mer-based tools have the unique ability to identify the characteristic k-mer peptides in the predicted enzymes. Availability and implementationhttps://github.com/yinlabniu/eCAMI and https://github.com/zhanglabNKU/eCAMI. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract  Summary: While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes–Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data. Availability and implementationOur software is available open source at https://github.com/nishatbristy007/NSB. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less
  4. Abstract MotivationSequences equivalent to their reverse complements (i.e. double-stranded DNA) have no analogue in text analysis and non-biological string algorithms. Despite this striking difference, algorithms designed for computational biology (e.g. sketching algorithms) are designed and tested in the same way as classical string algorithms. Then, as a post-processing step, these algorithms are adapted to work with genomic sequences by folding a k-mer and its reverse complement into a single sequence: The canonical representation (k-nonical space). ResultsThe effect of using the canonical representation with sketching methods is understudied and not understood. As a first step, we use context-free sketching methods to illustrate the potentially detrimental effects of using canonical k-mers with string algorithms not designed to accommodate for them. In particular, we show that large stretches of the genome (“sketching deserts”) are undersampled or entirely skipped by context-free sketching methods, effectively making these genomic regions invisible to subsequent algorithms using these sketches. We provide empirical data showing these effects and develop a theoretical framework explaining the appearance of sketching deserts. Finally, we propose two schemes to accommodate for these effects: (i) a new procedure that adapts existing sketching methods to k-nonical space and (ii) an optimization procedure to directly design new sketching methods for k-nonical space. Availability and implementationThe code used in this analysis is available under a permissive license at https://github.com/Kingsford-Group/mdsscope. 
    more » « less
  5. This work seeks to leverage Processing-with-storage-technology (PWST) to accelerate a key bioinformatics kernel calledk-mer counting, which involves processing large files of sequence data on the disk to build a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead. In particular, this work proposes a set of accelerator designs called Abakus that offer varying degrees of tradeoffs in terms of performance, efficiency, and hardware implementation complexity. The key to these designs is a set of domain-specific hardware extensions to accelerate the key operations fork-mer counting at various levels of the SSD hierarchy, with the goal of enhancing the limited computing capabilities of conventional SSDs, while exploiting the parallelism of the multi-channel, multi-way SSDs. Our evaluation suggests that Abakus can achieve 8.42×, 6.91×, and 2.32× speedup over the CPU-, GPU-, and near-data processing solutions. 
    more » « less