Cyberbullying is rapidly becoming one of the most serious online risks for adolescents. This has motivated work on machine learning methods to automate the process of cyberbullying detection, which have so far mostly viewed cyberbullying as one-off incidents that occur at a single point in time. Comparatively less is known about how cyberbullying behavior occurs and evolves over time. This oversight highlights a crucial open challenge for cyberbullying-related research, given that cyberbullying is typically defined as intentional acts of aggression via electronic communication that occur repeatedly and persistently . In this article, we center our discussion on the challenge of modeling temporal patterns of cyberbullying behavior. Specifically, we investigate how temporal information within a social media session, which has an inherently hierarchical structure (e.g., words form a comment and comments form a session), can be leveraged to facilitate cyberbullying detection. Recent findings from interdisciplinary research suggest that the temporal characteristics of bullying sessions differ from those of non-bullying sessions and that the temporal information from users’ comments can improve cyberbullying detection. The proposed framework consists of three distinctive features: (1) a hierarchical structure that reflects how a social media session is formed in a bottom-up manner; (2) attention mechanisms appliedmore »
Forecasting the presence and intensity of hostility on Instagram using linguistic and social features
Online antisocial behavior, such as cyberbullying, harassment, and trolling, is a widespread problem that threatens free discussion and has negative physical and mental health consequences for victims and communities. While prior work has proposed automated methods to identify hostile comments in online discussions, these methods work retrospectively on comments that have already been posted, making it difficult to intervene before an interaction escalates. In this paper we instead consider the problem of forecasting future hostilities in online discussions, which we decompose into two tasks: (1) given an initial sequence of non-hostile comments in a discussion, predict whether some future comment will contain hostility; and (2) given the first hostile comment in a discussion, predict whether this will lead to an escalation of hostility in subsequent comments. Thus, we aim to forecast both the presence and intensity of hostile comments based on linguistic and social features from earlier comments. To evaluate our approach, we introduce a corpus of over 30K annotated Instagram comments from over 1,100 posts. Our approach is able to predict the appearance of a hostile comment on an Instagram post ten or more hours in the future with an AUC of .82 (task 1), and can furthermore distinguish more »
- Award ID(s):
- 1822228
- Publication Date:
- NSF-PAR ID:
- 10128428
- Journal Name:
- Proceedings of the 12th International Conference on Web and Social Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Discourse involves two perspectives: a person’s intention in making an utterance and others’ perception of that utterance. The misalignment between these perspectives can lead to undesirable outcomes, such as misunderstandings, low productivity and even overt strife. In this work, we present a computational framework for exploring and comparing both perspectives in online public discussions. We combine logged data about public comments on Facebook with a survey of over 16,000 people about their intentions in writing these comments or about their perceptions of comments that others had written. Unlike previous studies of online discussions that have largely relied on third-party labels to quantify properties such as sentiment and subjectivity, our approach also directly captures what the speakers actually intended when writing their comments. In particular, our analysis focuses on judgments of whether a comment is stating a fact or an opinion, since these concepts were shown to be often confused. We show that intentions and perceptions diverge in consequential ways. People are more likely to perceive opinions than to intend them, and linguistic cues that signal how an utterance is intended can differ from those that signal how it will be perceived. Further, this misalignment between intentions and perceptions can bemore »
-
Online forums are an integral part of modern day courses, but motivating students to participate in educationally beneficial discussions can be challenging. Our proposed solution is to initialize (or “seed”) a new course forum with comments from past instances of the same course that are intended to trigger discussion that is beneficial to learning. In this work, we develop methods for selecting high-quality seeds and evaluate their impact over one course instance of a 186-student biology class. We designed a scale for measuring the “seeding suitability” score of a given thread (an opening comment and its ensuing discussion). We then constructed a supervised machine learning (ML) model for predicting the seeding suitability score of a given thread. This model was evaluated in two ways: first, by comparing its performance to the expert opinion of the course instructors on test/holdout data; and second, by embedding it in a live course, where it was actively used to facilitate seeding by the course instructors. For each reading assignment in the course, we presented a ranked list of seeding recommendations to the course instructors, who could review the list and filter out seeds with inconsistent or malformed content. We then ran a randomized controlledmore »
-
Cyberbullying has become one of the most pressing online risks for young people and has raised serious concerns in society. The emerging literature identifies cyberbullying as repetitive acts that occur over time rather than one-off incidents. Yet, there has been relatively little work to model the hierarchical structure of social media sessions and the temporal dynamics of cyberbullying in online social network sessions. We propose a hierarchical attention network for cyberbullying detection that takes these aspects of cyberbullying into account. The primary distinctive characteristics of our approach include: (i) a hierarchical structure that mirrors the structure of a social media session; (ii) levels of attention mechanisms applied at the word and comment level, thereby enabling the model to pay different amounts of attention to words and comments, depending on the context; and (iii) a cyberbullying detection task that also predicts the interval of time between two adjacent comments. These characteristics allow the model to exploit the commonalities and differences across these two tasks to improve the performance of cyberbullying detection. Experiments on a real-world dataset from Instagram, the social media platform on which the highest percentage of users have reported experiencing cyberbullying, reveal that the proposed architecture outperforms the state-of-the-artmore »
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)The Temple University Hospital Seizure Detection Corpus (TUSZ) [1] has been in distribution since April 2017. It is a subset of the TUH EEG Corpus (TUEG) [2] and the most frequently requested corpus from our 3,000+ subscribers. It was recently featured as the challenge task in the Neureka 2020 Epilepsy Challenge [3]. A summary of the development of the corpus is shown below in Table 1. The TUSZ Corpus is a fully annotated corpus, which means every seizure event that occurs within its files has been annotated. The data is selected from TUEG using a screening process that identifies files most likely to contain seizures [1]. Approximately 7% of the TUEG data contains a seizure event, so it is important we triage TUEG for high yield data. One hour of EEG data requires approximately one hour of human labor to complete annotation using the pipeline described below, so it is important from a financial standpoint that we accurately triage data. A summary of the labels being used to annotate the data is shown in Table 2. Certain standards are put into place to optimize the annotation process while not sacrificing consistency. Due to the nature of EEG recordings, some recordsmore »