skip to main content

Title: Forecasting the presence and intensity of hostility on Instagram using linguistic and social features
Online antisocial behavior, such as cyberbullying, harassment, and trolling, is a widespread problem that threatens free discussion and has negative physical and mental health consequences for victims and communities. While prior work has proposed automated methods to identify hostile comments in online discussions, these methods work retrospectively on comments that have already been posted, making it difficult to intervene before an interaction escalates. In this paper we instead consider the problem of forecasting future hostilities in online discussions, which we decompose into two tasks: (1) given an initial sequence of non-hostile comments in a discussion, predict whether some future comment will contain hostility; and (2) given the first hostile comment in a discussion, predict whether this will lead to an escalation of hostility in subsequent comments. Thus, we aim to forecast both the presence and intensity of hostile comments based on linguistic and social features from earlier comments. To evaluate our approach, we introduce a corpus of over 30K annotated Instagram comments from over 1,100 posts. Our approach is able to predict the appearance of a hostile comment on an Instagram post ten or more hours in the future with an AUC of .82 (task 1), and can furthermore distinguish more » between high and low levels of future hostility with an AUC of .91 (task 2). « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 12th International Conference on Web and Social Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyberbullying is rapidly becoming one of the most serious online risks for adolescents. This has motivated work on machine learning methods to automate the process of cyberbullying detection, which have so far mostly viewed cyberbullying as one-off incidents that occur at a single point in time. Comparatively less is known about how cyberbullying behavior occurs and evolves over time. This oversight highlights a crucial open challenge for cyberbullying-related research, given that cyberbullying is typically defined as intentional acts of aggression via electronic communication that occur repeatedly and persistently . In this article, we center our discussion on the challenge of modeling temporal patterns of cyberbullying behavior. Specifically, we investigate how temporal information within a social media session, which has an inherently hierarchical structure (e.g., words form a comment and comments form a session), can be leveraged to facilitate cyberbullying detection. Recent findings from interdisciplinary research suggest that the temporal characteristics of bullying sessions differ from those of non-bullying sessions and that the temporal information from users’ comments can improve cyberbullying detection. The proposed framework consists of three distinctive features: (1) a hierarchical structure that reflects how a social media session is formed in a bottom-up manner; (2) attention mechanisms appliedmore »at the word- and comment-level to differentiate the contributions of words and comments to the representation of a social media session; and (3) the incorporation of temporal features in modeling cyberbullying behavior at the comment-level. Quantitative and qualitative evaluations are conducted on a real-world dataset collected from Instagram, the social networking site with the highest percentage of users reporting cyberbullying experiences. Results from empirical evaluations show the significance of the proposed methods, which are tailored to capture temporal patterns of cyberbullying detection.« less
  2. Discourse involves two perspectives: a person’s intention in making an utterance and others’ perception of that utterance. The misalignment between these perspectives can lead to undesirable outcomes, such as misunderstandings, low productivity and even overt strife. In this work, we present a computational framework for exploring and comparing both perspectives in online public discussions. We combine logged data about public comments on Facebook with a survey of over 16,000 people about their intentions in writing these comments or about their perceptions of comments that others had written. Unlike previous studies of online discussions that have largely relied on third-party labels to quantify properties such as sentiment and subjectivity, our approach also directly captures what the speakers actually intended when writing their comments. In particular, our analysis focuses on judgments of whether a comment is stating a fact or an opinion, since these concepts were shown to be often confused. We show that intentions and perceptions diverge in consequential ways. People are more likely to perceive opinions than to intend them, and linguistic cues that signal how an utterance is intended can differ from those that signal how it will be perceived. Further, this misalignment between intentions and perceptions can bemore »linked to the future health of a conversation: when a comment whose author intended to share a fact is misperceived as sharing an opinion, the subsequent conversation is more likely to derail into uncivil behavior than when the comment is perceived as intended. Altogether, these findings may inform the design of discussion platforms that better promote positive interactions.« less
  3. Online forums are an integral part of modern day courses, but motivating students to participate in educationally beneficial discussions can be challenging. Our proposed solution is to initialize (or “seed”) a new course forum with comments from past instances of the same course that are intended to trigger discussion that is beneficial to learning. In this work, we develop methods for selecting high-quality seeds and evaluate their impact over one course instance of a 186-student biology class. We designed a scale for measuring the “seeding suitability” score of a given thread (an opening comment and its ensuing discussion). We then constructed a supervised machine learning (ML) model for predicting the seeding suitability score of a given thread. This model was evaluated in two ways: first, by comparing its performance to the expert opinion of the course instructors on test/holdout data; and second, by embedding it in a live course, where it was actively used to facilitate seeding by the course instructors. For each reading assignment in the course, we presented a ranked list of seeding recommendations to the course instructors, who could review the list and filter out seeds with inconsistent or malformed content. We then ran a randomized controlledmore »study, in which one group of students was shown seeds that were recommended by the ML model, and another group was shown seeds that were recommended by an alternative model that ranked seeds purely by the length of discussion that was generated in previous course instances. We found that the group of students that received posts from either seeding model generated more discussion than a control group in the course that did not get seeded posts. Furthermore, students who received seeds selected by the ML-based model showed higher levels of engagement, as well as greater learning gains, than those who received seeds ranked by length of discussion.« less
  4. Cyberbullying has become one of the most pressing online risks for young people and has raised serious concerns in society. The emerging literature identifies cyberbullying as repetitive acts that occur over time rather than one-off incidents. Yet, there has been relatively little work to model the hierarchical structure of social media sessions and the temporal dynamics of cyberbullying in online social network sessions. We propose a hierarchical attention network for cyberbullying detection that takes these aspects of cyberbullying into account. The primary distinctive characteristics of our approach include: (i) a hierarchical structure that mirrors the structure of a social media session; (ii) levels of attention mechanisms applied at the word and comment level, thereby enabling the model to pay different amounts of attention to words and comments, depending on the context; and (iii) a cyberbullying detection task that also predicts the interval of time between two adjacent comments. These characteristics allow the model to exploit the commonalities and differences across these two tasks to improve the performance of cyberbullying detection. Experiments on a real-world dataset from Instagram, the social media platform on which the highest percentage of users have reported experiencing cyberbullying, reveal that the proposed architecture outperforms the state-of-the-artmore »method.« less
  5. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The Temple University Hospital Seizure Detection Corpus (TUSZ) [1] has been in distribution since April 2017. It is a subset of the TUH EEG Corpus (TUEG) [2] and the most frequently requested corpus from our 3,000+ subscribers. It was recently featured as the challenge task in the Neureka 2020 Epilepsy Challenge [3]. A summary of the development of the corpus is shown below in Table 1. The TUSZ Corpus is a fully annotated corpus, which means every seizure event that occurs within its files has been annotated. The data is selected from TUEG using a screening process that identifies files most likely to contain seizures [1]. Approximately 7% of the TUEG data contains a seizure event, so it is important we triage TUEG for high yield data. One hour of EEG data requires approximately one hour of human labor to complete annotation using the pipeline described below, so it is important from a financial standpoint that we accurately triage data. A summary of the labels being used to annotate the data is shown in Table 2. Certain standards are put into place to optimize the annotation process while not sacrificing consistency. Due to the nature of EEG recordings, some recordsmore »start off with a segment of calibration. This portion of the EEG is instantly recognizable and transitions from what resembles lead artifact to a flat line on all the channels. For the sake of seizure annotation, the calibration is ignored, and no time is wasted on it. During the identification of seizure events, a hard “3 second rule” is used to determine whether two events should be combined into a single larger event. This greatly reduces the time that it takes to annotate a file with multiple events occurring in succession. In addition to the required minimum 3 second gap between seizures, part of our standard dictates that no seizure less than 3 seconds be annotated. Although there is no universally accepted definition for how long a seizure must be, we find that it is difficult to discern with confidence between burst suppression or other morphologically similar impressions when the event is only a couple seconds long. This is due to several reasons, the most notable being the lack of evolution which is oftentimes crucial for the determination of a seizure. After the EEG files have been triaged, a team of annotators at NEDC is provided with the files to begin data annotation. An example of an annotation is shown in Figure 1. A summary of the workflow for our annotation process is shown in Figure 2. Several passes are performed over the data to ensure the annotations are accurate. Each file undergoes three passes to ensure that no seizures were missed or misidentified. The first pass of TUSZ involves identifying which files contain seizures and annotating them using our annotation tool. The time it takes to fully annotate a file can vary drastically depending on the specific characteristics of each file; however, on average a file containing multiple seizures takes 7 minutes to fully annotate. This includes the time that it takes to read the patient report as well as traverse through the entire file. Once an event has been identified, the start and stop time for the seizure is stored in our annotation tool. This is done on a channel by channel basis resulting in an accurate representation of the seizure spreading across different parts of the brain. Files that do not contain any seizures take approximately 3 minutes to complete. Even though there is no annotation being made, the file is still carefully examined to make sure that nothing was overlooked. In addition to solely scrolling through a file from start to finish, a file is often examined through different lenses. Depending on the situation, low pass filters are used, as well as increasing the amplitude of certain channels. These techniques are never used in isolation and are meant to further increase our confidence that nothing was missed. Once each file in a given set has been looked at once, the annotators start the review process. The reviewer checks a file and comments any changes that they recommend. This takes about 3 minutes per seizure containing file, which is significantly less time than the first pass. After each file has been commented on, the third pass commences. This step takes about 5 minutes per seizure file and requires the reviewer to accept or reject the changes that the second reviewer suggested. Since tangible changes are made to the annotation using the annotation tool, this step takes a bit longer than the previous one. Assuming 18% of the files contain seizures, a set of 1,000 files takes roughly 127 work hours to annotate. Before an annotator contributes to the data interpretation pipeline, they are trained for several weeks on previous datasets. A new annotator is able to be trained using data that resembles what they would see under normal circumstances. An additional benefit of using released data to train is that it serves as a means of constantly checking our work. If a trainee stumbles across an event that was not previously annotated, it is promptly added, and the data release is updated. It takes about three months to train an annotator to a point where their annotations can be trusted. Even though we carefully screen potential annotators during the hiring process, only about 25% of the annotators we hire survive more than one year doing this work. To ensure that the annotators are consistent in their annotations, the team conducts an interrater agreement evaluation periodically to ensure that there is a consensus within the team. The annotation standards are discussed in Ochal et al. [4]. An extended discussion of interrater agreement can be found in Shah et al. [5]. The most recent release of TUSZ, v1.5.2, represents our efforts to review the quality of the annotations for two upcoming challenges we hosted: an internal deep learning challenge at IBM [6] and the Neureka 2020 Epilepsy Challenge [3]. One of the biggest changes that was made to the annotations was the imposition of a stricter standard for determining the start and stop time of a seizure. Although evolution is still included in the annotations, the start times were altered to start when the spike-wave pattern becomes distinct as opposed to merely when the signal starts to shift from background. This cuts down on background that was mislabeled as a seizure. For seizure end times, all post ictal slowing that was included was removed. The recent release of v1.5.2 did not include any additional data files. Two EEG files had been added because, originally, they were corrupted in v1.5.1 but were able to be retrieved and added for the latest release. The progression from v1.5.0 to v1.5.1 and later to v1.5.2, included the re-annotation of all of the EEG files in order to develop a confident dataset regarding seizure identification. Starting with v1.4.0, we have also developed a blind evaluation set that is withheld for use in competitions. The annotation team is currently working on the next release for TUSZ, v1.6.0, which is expected to occur in August 2020. It will include new data from 2016 to mid-2019. This release will contain 2,296 files from 2016 as well as several thousand files representing the remaining data through mid-2019. In addition to files that were obtained with our standard triaging process, a part of this release consists of EEG files that do not have associated patient reports. Since actual seizure events are in short supply, we are mining a large chunk of data for which we have EEG recordings but no reports. Some of this data contains interesting seizure events collected during long-term EEG sessions or data collected from patients with a history of frequent seizures. It is being mined to increase the number of files in the corpus that have at least one seizure event. We expect v1.6.0 to be released before IEEE SPMB 2020. The TUAR Corpus is an open-source database that is currently available for use by any registered member of our consortium. To register and receive access, please follow the instructions provided at this web page: The data is located here:« less