In this paper, we investigate the estimator-based output feedback control problem of multi-delay systems. This work is an extension of recently developed operator-value LMI framework for infinite-dimensional time-delay systems. Based on the optimal convex state feedback controller and generalized Luenberger observer synthesis conditions we already have, the estimator-based output feedback controller is designed to contain the estimates of both the present state and history of the state. An output feedback controller synthesis condition is proposed using SOS method, which is expressed in a set of LMI/SDP constraints. The simulation examples are displayed to demonstrate the effectiveness and advantages of the proposed results.
more »
« less
Finite-Horizon Separation-Based Covariance Control for Discrete-Time Stochastic Linear Systems
In this paper, we address a finite-horizon stochastic optimal control problem with covariance assignment and input energy constraints for discrete-time stochastic linear systems with partial state information. In our approach, we consider separation-based control policies that correspond to sequences of control laws that are affine functions of either the complete history of the output estimation errors, that is, the differences between the actual output measurements and their corresponding estimated outputs produced by a discrete-time Kalman filter, or a truncation of the same history. This particular feedback parametrization allows us to associate the stochastic optimal control problem with a tractable semidefinite (convex) program. We argue that the proposed procedure for the reduction of the stochastic optimal control problem to a convex program has significant advantages in terms of improved scalability and tractability over the approaches proposed in the relevant literature.
more »
« less
- Award ID(s):
- 1753687
- PAR ID:
- 10128476
- Date Published:
- Journal Name:
- 2018 IEEE Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 3299 to 3304
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment.more » « less
-
In this paper, we propose a convex optimization approach to chance-constrained drift counteraction optimal control (DCOC) problems for linear systems with additive stochastic disturbances. Chance-constrained DCOC aims to compute an optimal control law to maximize the time duration before the probability of violating a prescribed set of constraints can no longer be maintained to be below a specified risk level. While conventional approaches to this problem involve solving a mixed-integer programming problem, we show that an optimal solution to the problem can also be found by solving a convex second-order cone programming problem without integer variables. We illustrate the application of chance-constrained DCOC to an automotive adaptive cruise control example.more » « less
-
This work introduces a sequential convex programming framework for non-linear, finitedimensional stochastic optimal control, where uncertainties are modeled by a multidimensional Wiener process. We prove that any accumulation point of the sequence of iterates generated by sequential convex programming is a candidate locally-optimal solution for the original problem in the sense of the stochastic Pontryagin Maximum Principle. Moreover, we provide sufficient conditions for the existence of at least one such accumulation point. We then leverage these properties to design a practical numerical method for solving non-linear stochastic optimal control problems based on a deterministic transcription of stochastic sequential convex programming.more » « less
-
Abstract We investigate a P 1 P_{1} finite element method for an elliptic distributed optimal control problem with pointwise state constraints and a state equation that includes advective/convective and reactive terms.The convergence of this method can be established for general polygonal/polyhedral domains that are not necessarily convex.The discrete problem is a strictly convex quadratic program with box constraints that can be solved efficiently by a primal-dual active set algorithm.more » « less