skip to main content


Title: Finite-Horizon Separation-Based Covariance Control for Discrete-Time Stochastic Linear Systems
In this paper, we address a finite-horizon stochastic optimal control problem with covariance assignment and input energy constraints for discrete-time stochastic linear systems with partial state information. In our approach, we consider separation-based control policies that correspond to sequences of control laws that are affine functions of either the complete history of the output estimation errors, that is, the differences between the actual output measurements and their corresponding estimated outputs produced by a discrete-time Kalman filter, or a truncation of the same history. This particular feedback parametrization allows us to associate the stochastic optimal control problem with a tractable semidefinite (convex) program. We argue that the proposed procedure for the reduction of the stochastic optimal control problem to a convex program has significant advantages in terms of improved scalability and tractability over the approaches proposed in the relevant literature.  more » « less
Award ID(s):
1753687
NSF-PAR ID:
10128476
Author(s) / Creator(s):
Date Published:
Journal Name:
2018 IEEE Conference on Decision and Control (CDC)
Page Range / eLocation ID:
3299 to 3304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate the estimator-based output feedback control problem of multi-delay systems. This work is an extension of recently developed operator-value LMI framework for infinite-dimensional time-delay systems. Based on the optimal convex state feedback controller and generalized Luenberger observer synthesis conditions we already have, the estimator-based output feedback controller is designed to contain the estimates of both the present state and history of the state. An output feedback controller synthesis condition is proposed using SOS method, which is expressed in a set of LMI/SDP constraints. The simulation examples are displayed to demonstrate the effectiveness and advantages of the proposed results. 
    more » « less
  2. We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment. 
    more » « less
  3. We consider the problem of decentralized sequential active hypothesis testing (DSAHT), where two transmitting agents, each possessing a private message, are actively helping a third agent–and each other–to learn the message pair over a discrete memoryless multiple access channel (DM-MAC). The third agent (receiver) observes the noisy channel output, which is also available to the transmitting agents via noiseless feedback. We formulate this problem as a decentralized dynamic team, show that optimal transmission policies have a time-invariant domain, and characterize the solution through a dynamic program. Several alternative formulations are discussed involving time-homogenous cost functions and/or variable-length codes, resulting in solutions described through fixed-point, Bellman-type equations. Subsequently, we make connections with the problem of simplifying the multi-letter capacity expressions for the noiseless feedback capacity of the DM-MAC. We show that restricting attention to distributions induced by optimal transmission schemes for the DSAHT problem, without loss of optimality, transforms the capacity expression, so that it can be thought of as the average reward received by an appropriately defined stochastic dynamical system with time-invariant state space. 
    more » « less
  4. Customer cancellations and no‐shows have an important impact on the performance of an airline's revenue management system. In this study, we study airline network revenue management problems with customer cancellations and no‐shows, considering two types of demand models: independent‐demand and choice‐based‐demand models. In independent‐demand models, the booking request rates for different products are independent of the assortment of products offered by the airline (exogenous), whereas in choice‐based‐demand models they depend on the airline's assortment (endogenous). The stochastic problems of optimizing the booking policies for the two demand models are not tractable because of the high‐dimensional state space. Therefore, for each model, we use the corresponding deterministic, continuous‐time, and continuous‐state model, known as the fluid model. A booking policy based on the fluid solution can be implemented for the original stochastic, discrete model. This fluid policy is shown to be asymptotically optimal when the arrival rates become high and the seat capacities become large. In the independent‐demand setting, an optimal fluid solution can be computed by solving a convex optimization problem for which efficient algorithms exist, whereas for some choice‐based‐demand models, the fluid control problems are known to be intractable. We also develop mixed fluid policies for the independent‐demand setting, taking advantage of the real‐time booking state, to improve the performance over the fluid policy. In a factorial experiment of 20 small‐sized single‐leg problems, the revenue loss under one of the mixed fluid policies is demonstrated to be less than 1% of the optimal value for all problems.

     
    more » « less
  5. We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an existing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-time approximation algorithm unless P = NP. Therefore, to solve the DDF problem effectively, we propose two convex integer-programming formulations and investigate their corresponding complementary and Lagrangian-dual problems. Leveraging the concavity of the objective functions in the two proposed convex integer-programming formulations, we design an exact algorithm, aimed at solving the DDF problem to optimality. We further derive a family of submodular valid inequalities and optimality cuts, which can significantly enhance the algorithm performance. We also develop scalable randomized-sampling and local-search algorithms with provable performance guarantees. Finally, we test our algorithms using real-world data on the new phasor-measurement-units placement problem for modern power grids, considering the existing conventional sensors. Our numerical study demonstrates the efficiency of our exact algorithm and the scalability and high-quality outputs of our approximation algorithms. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: Y. Li and W. Xie were supported in part by Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046414] and Division of Computing and Communication Foundations [Grant 2246417]. J. Lee was supported in part by Air Force Office of Scientific Research [Grants FA9550-19-1-0175 and FA9550-22-1-0172]. M. Fampa was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 305444/2019-0 and 434683/2018-3]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.0235 . 
    more » « less