In this video, we show high-fidelity numerical results of supersonic spatially-developing turbulent boundary layers (SDTBL) under strong concave and concave curvatures and Mach = 2.86. The selected numerical tool is Direct Numerical Simulation (DNS) with high spatial/temporal resolution. The prescribed concave geometry is based on the experimental study by Donovan et al. (J. Fluid Mech., 259, 1-24, 1994). Turbulent inflow conditions are based on extracted data from a previous DNS over a flat plate (i.e., turbulence precursors). The comprehensive DNS information sheds important light on the transport phenomena inside turbulent boundary layers subject to strong deceleration or Adverse Pressure Gradient (APG) caused by concave walls as well as to strong acceleration or Favorable Pressure Gradient (FPG) caused by convex walls at different wall thermal conditions (i.e., cold, adiabatic and hot walls). In this opportunity, the selected scientific visualization tool is Virtual Reality (VR) by extracting vortex core iso-surfaces via the Q-criterion to convert them to a file format readable by the HTC Vive VR toolkit. The reader is invited to visit our Virtual Wind Tunnel (VWT) under a fully immersive environment for further details. The video is available at: https://gfm.aps.org/meetings/dfd-2022/6313a60c199e4c2da9a946bc
more »
« less
Direct Numerical Simulation of Nozzle-Wall Pressure Fluctuations in a Mach 8 Wind Tunnel
Direct numerical simulations (DNS) of the full-scale axisymmetric nozzle of a Mach 8 wind tunnel are conducted with an emphasis on characterizing the properties of the pressure fluctua- tions induced by the turbulent boundary layer (TBL) along the nozzle wall. The axisymmetric nozzle geometry and the flow conditions of the DNS match those of the Sandia Hypersonic Wind Tunnel at Mach 8. The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate’s correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The wall-pressure intensity, power spectral density, and coherence predicted by DNS show good comparisons with those measured in the same tunnel. The Corcos model is found to deliver good prediction of wall pressure coherence over inter- mediate and high frequencies. The streamwise and spanwise decay constants at Mach 8 are similar to those predicted by DNS and experiments at lower supersonic Mach numbers.
more »
« less
- Award ID(s):
- 1640865
- PAR ID:
- 10128562
- Date Published:
- Journal Name:
- AIAA Scitech 2019 Forum
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( $${>}300\delta _i$$ , with $$\delta _i$$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $$Re_\tau \approx 1200$$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increase in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region.more » « less
-
A new Anechoic Wall Jet Wind Tunnel was built at Virginia Tech. A detailed design based on the old wall jet tunnel was done to improve the quality of the resultant flow. Aerodynamic and acoustic calibrations were performed in order to understand properties and characteristics of the flow generated by this new facility which can be used for various aeroacoustic studies. Far-field acoustics were measured using half-inch B&K microphones in a streamwise array to characterize and reduce the background noise. Sound pressure levels were lower by 10 dB for frequencies up to 700Hz in comparison to the old facility. The turbulent surface pressure fluctuations of the wall-jet flow were studied using Sennheiser microphones placed along streamwise and spanwise locations to record surface pressure fluctuations. Comparison of the autocorrelation plotted for microphones along the same span indicate uniform flow features. A decay in the turbulence levels is observed along the downstream direction as expected. Aerodynamic calibrations included mean velocity measurements along different spanwise locations, wall-jet boundary layer profiles and streamwise cross-sections. Spanwise and cross-sectional velocity profiles show good uniformity of the flow. Detailed boundary layer analyses were performed with the parameters obtained from the experiments.more » « less
-
This work presents recent advancements in the study of film cooling in hypersonic flows, considering experimental and numerical investigations, with the aim to characterize the wall-cooling performance in different coolant injection and baseflow conditions in a Mach number range 2–7.7. The study explores the mutual interaction between the injected coolant film and the boundary-layer flow, with emphasis on the effects of wall blowing on the boundary-layer characteristics, stability, and transition to turbulence, as well as the effect of transition on wall-cooling performance. Considered flow configurations include cases of effusion cooling in both wall-normal or slightly inclined and wall-parallel blowing, different types of coolant, cases of favorable pressure gradient compared to zero pressure gradient, as well as transpiration cooling cases at different blowing ratios and surface geometries. For the transpiration cooling case, experiments in different hypersonic wind tunnel facilities are presented for flat plate and cone geometries, with coolant injected through C/C porous samples, whereas numerical simulations of modeled porous injection are presented for a flat plate and a blunt cone, showing results for the boundary-layer receptivity with coolant injection and the associated effects on transition and cooling performance. A summary of the main findings is provided along with a critical analysis based on a comparative study to evaluate the effect of each configuration, injection strategy, and key parameters on the boundary-layer flow and the feedback on wall-cooling performance. Conclusions are drawn about potential directions of study for the further development and optimization of the film cooling technique for future hypersonic vehicles.more » « less
-
Direct Numerical Simulation (DNS) of compressible spatially-developing turbulent boundary layers (SDTBL) is performed at a Mach number of 2.5 and low/high Reynolds numbers over isothermal Zero-Pressure Gradient (ZPG) flat plates. Turbulent inflow information is generated via a dynamic rescaling-recycling approach (J. Fluid Mech., 670, pp. 581-605, 2011), which avoids the use of empirical correlations in the computation of inlet turbulent scales. The range of the low Reynolds number case is approximately 400-800, based on the momentum thickness, freestream velocity and wall viscosity. DNS at higher Reynolds numbers (~3,000, about four-fold larger) is also carried out with the purpose of analyzing the effect of Reynolds number on the transport phenomena in the supersonic regime. Additionally, low/high order flow statistics are compared with DNS of an incompressible isothermal ZPG boundary layer at similar low Reynolds numbers and the temperature regarded as a passive scalar. Peaks of turbulence intensities move closer to the wall as the Reynolds number increases in the supersonic flat plate. Furthermore, Reynolds shear stresses depict a much larger "plateau" (constant shear layer) at the highest Reynolds number considered in present study.more » « less
An official website of the United States government

