ABSTRACT The isometric force–length (F–L) and isotonic force–velocity (F–V) relationships characterize the contractile properties of skeletal muscle under controlled conditions, yet it remains unclear how these properties relate to in vivo muscle function. Here, we map the in situ F–L and F–V characteristics of guinea fowl (Numida meleagris) lateral gastrocnemius (LG) to the in vivo operating range during walking and running. We test the hypothesis that muscle fascicles operate on the F–L plateau, near the optimal length for force (L0) and near velocities that maximize power output (Vopt) during walking and running. We found that in vivo LG velocities are consistent with optimizing power during work production, and economy of force at higher loads. However, LG does not operate near L0 at higher loads. LG length was near L0 at the time of electromyography (EMG) onset but shortened rapidly such that force development during stance occurred on the ascending limb of the F–L curve, around 0.8L0. Shortening across L0 in late swing might optimize potential for rapid force development near the swing–stance transition, providing resistance to unexpected perturbations that require rapid force development. We also found evidence of in vivo passive force rise in late swing, without EMG activity, at lengths where in situ passive force is zero, suggesting that dynamic viscoelastic effects contribute to in vivo force development. Comparison of in vivo operating ranges with F–L and F–V properties suggests the need for new approaches to characterize muscle properties in controlled conditions that more closely resemble in vivo dynamics.
more »
« less
Internal fluid pressure influences muscle contractile force
Fluid fills intracellular, extracellular, and capillary spaces within muscle. During normal physiological activity, intramuscular fluid pressures develop as muscle exerts a portion of its developed force internally. These pressures, typically ranging between 10 and 250 mmHg, are rarely considered in mechanical models of muscle but have the potential to affect performance by influencing force and work produced during contraction. Here, we test a model of muscle structure in which intramuscular pressure directly influences contractile force. Using a pneumatic cuff, we pressurize muscle midcontraction at 260 mmHg and report the effect on isometric force. Pressurization reduced isometric force at short muscle lengths (e.g., −11.87% of P0at 0.9 L0), increased force at long lengths (e.g., +3.08% of P0at 1.25 L0), but had no effect at intermediate muscle lengths ∼1.1–1.15 L0. This variable response to pressurization was qualitatively mimicked by simple physical models of muscle morphology that displayed negative, positive, or neutral responses to pressurization depending on the orientation of reinforcing fibers representing extracellular matrix collagen. These findings show that pressurization can have immediate, significant effects on muscle contractile force and suggest that forces transmitted to the extracellular matrix via pressurized fluid may be important, but largely unacknowledged, determinants of muscle performance in vivo.
more »
« less
- Award ID(s):
- 1832795
- PAR ID:
- 10128657
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 3
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 1772-1778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.more » « less
-
null (Ed.)Muscle contraction results from force-generating cross-bridge interactions between myosin and actin. Cross-bridge cycling kinetics underlie fundamental contractile properties, such as active force production and energy utilization. Factors that influence cross-bridge kinetics at the molecular level propagate through the sarcomeres, cells and tissue to modulate whole-muscle function. Conversely, movement and changes in the muscle length can influence cross-bridge kinetics on the molecular level. Reduced, single-molecule and single-fibre experiments have shown that increasing the strain on cross-bridges may slow their cycling rate and prolong their attachment duration. However, whether these strain-dependent cycling mechanisms persist in the intact muscle tissue, which encompasses more complex organization and passive elements, remains unclear. To investigate this multi-scale relationship, we adapted traditional step-stretch protocols for use with mouse soleus muscle during isometric tetanic contractions, enabling novel estimates of length-dependent cross-bridge kinetics in the intact skeletal muscle. Compared to rates at the optimal muscle length ( L o ), we found that cross-bridge detachment rates increased by approximately 20% at 90% of L o (shorter) and decreased by approximately 20% at 110% of L o (longer). These data indicate that cross-bridge kinetics vary with whole-muscle length during intact, isometric contraction, which could intrinsically modulate force generation and energetics, and suggests a multi-scale feedback pathway between whole-muscle function and cross-bridge activity.more » « less
-
ABSTRACT The jaw muscles of the southern alligator lizard, Elgaria multicarinata, are used in prolonged mate-holding behavior, and also to catch fast prey. In both males and females, these muscles exhibit an unusual type of high endurance known as sustained force in which contractile force does not return to baseline between subsequent contractions. This phenomenon is assumed to facilitate the prolonged mate-holding observed in this species. Skeletal muscle is often subject to a speed–endurance trade-off. Here, we determined the isometric twitch, tetanic and isotonic force–velocity properties of the jaw muscles at ∼24°C as metrics of contractile speed and compared these properties with a more typical thigh locomotory muscle to determine whether endurance by sustained force allows for circumvention of the speed–endurance trade-off. The specialized jaw muscle was generally slower than the more typical thigh muscle: time to peak twitch force, twitch 90% relaxation time (P<0.01), and tetanic 90% and 50% relaxation times (P<0.001) were significantly longer, and force–velocity properties were significantly slower (P<0.001) in the jaw than the thigh muscle. However, there seemed to be greater effects on relaxation rates and shortening velocity than on force rise times: there was no effect of muscle on time to peak, or 50% of tetanic force. Hence, the jaw muscle of the southern alligator lizard does not seem to circumvent the speed–endurance trade-off. However, the maintenance of force rise times despite slow relaxation, potentially enabled by the presence of hybrid fibers, may allow this muscle to meet the functional demand of prey capture.more » « less
-
Intensely contracting fast skeletal muscle rapidly loses the ability to generate force, due in part to the accumulation of phosphate (Pi) inhibiting myosin’s force-generating capacity, in a process that is strain dependent. Crucial aspects of the mechanism underlying this inhibition remain unclear. Therefore, we directly determined the effects of increasing [Pi] on rabbit psoas muscle myosin’s ability to generate force against progressively higher resistive loads in a laser trap assay, with the requisite spatial and temporal resolution to discern the mechanism of inhibition. Myosin’s force-generating capacity decreased with increasing [Pi], an effect that became more pronounced at higher resistive loads. The decrease in force resulted from myosin’s accelerated detachment from actin, which also increased at higher resistive forces. These data are well fit by a cross-bridge model in which Pirebinds to actomyosin in a postpowerstroke, ADP-bound state before accelerating myosin’s detachment from actin. Thus, these findings provide important molecular insight into the mechanism underlying the Pi-induced loss of force during muscle fatigue from intense contractile activity.more » « less
An official website of the United States government
