Abstract Existing data suggest the extracellular matrix (ECM) of vertebrate skeletal muscle consists of several morphologically distinct layers: an endomysium, perimysium, and epimysium surrounding muscle fibers, fascicles, and whole muscles, respectively. These ECM layers are hypothesized to serve important functional roles within muscle, influencing passive mechanics, providing avenues for force transmission, and influencing dynamic shape changes during contraction. The morphology of the skeletal muscle ECM is well described in mammals and birds; however, ECM morphology in other vertebrate groups including amphibians, fish, and reptiles remains largely unexamined. It remains unclear whether a multilayered ECM is a common feature of vertebrate skeletal muscle, and whether functional roles attributed to the ECM should be considered in mechanical analyses of non‐mammalian and non‐avian muscle. To explore the prevalence of a multilayered ECM, we used a cell maceration and scanning electron microscopy technique to visualize the organization of ECM collagen in muscle from six vertebrates: bullfrogs (Lithobates catesbeianus), turkeys (Meleagris gallopavo), alligators (Alligator mississippiensis), cane toads (Rhinella marina), laboratory mice (Mus musculus), and carp (Cyprinus carpio). All muscles studied contained a collagen‐reinforced ECM with multiple morphologically distinct layers. An endomysium surrounding muscle fibers was apparent in all samples. A perimysium surrounding groups of muscle fibers was apparent in all but carp epaxial muscle; a muscle anatomically, functionally, and phylogenetically distinct from the others studied. An epimysium was apparent in all samples taken at the muscle periphery. These findings show that a multilayered ECM is a common feature of vertebrate muscle and suggest that a functionally relevant ECM should be considered in mechanical models of vertebrate muscle generally. It remains unclear whether cross‐species variations in ECM architecture are the result of phylogenetic, anatomical, or functional differences, but understanding the influence of such variation on muscle mechanics may prove a fruitful area for future research.
more »
« less
Passive skeletal muscle can function as an osmotic engine
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.
more »
« less
- Award ID(s):
- 1832795
- PAR ID:
- 10310298
- Date Published:
- Journal Name:
- Biology Letters
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 1744-957X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fluid fills intracellular, extracellular, and capillary spaces within muscle. During normal physiological activity, intramuscular fluid pressures develop as muscle exerts a portion of its developed force internally. These pressures, typically ranging between 10 and 250 mmHg, are rarely considered in mechanical models of muscle but have the potential to affect performance by influencing force and work produced during contraction. Here, we test a model of muscle structure in which intramuscular pressure directly influences contractile force. Using a pneumatic cuff, we pressurize muscle midcontraction at 260 mmHg and report the effect on isometric force. Pressurization reduced isometric force at short muscle lengths (e.g., −11.87% of P0at 0.9 L0), increased force at long lengths (e.g., +3.08% of P0at 1.25 L0), but had no effect at intermediate muscle lengths ∼1.1–1.15 L0. This variable response to pressurization was qualitatively mimicked by simple physical models of muscle morphology that displayed negative, positive, or neutral responses to pressurization depending on the orientation of reinforcing fibers representing extracellular matrix collagen. These findings show that pressurization can have immediate, significant effects on muscle contractile force and suggest that forces transmitted to the extracellular matrix via pressurized fluid may be important, but largely unacknowledged, determinants of muscle performance in vivo.more » « less
-
Background/Objectives: This study explores an optimization-based strategy for muscle force estimation by employing simplified cost functions integrated with physiologically relevant muscle models. Methods: Considering elbow flexion as a case study, we employ an inverse-dynamics approach to estimate muscle forces for the biceps brachii, brachialis, and brachioradialis, utilizing different combinations of cost functions and muscle constitutive models. Muscle force generation is modeled by accounting for active and passive contractile behavior to varying degrees using Hill-type models. In total, three separate cost functions (minimization of total muscle force, mechanical work, and muscle stress) are evaluated with each muscle force model to represent potential neuromuscular control strategies without relying on electromyography (EMG) data, thereby characterizing the interplay between muscle models and cost functions. Results: Among the evaluated models, the Hill-type muscle model that incorporates both active and passive properties, combined with the stress minimization cost function, provided the most accurate predictions of muscle activation and force production for all three arm flexor muscles. Our results, validated against existing biomechanical data, demonstrate that even simplified cost functions, when paired with detailed muscle models, can achieve high accuracy in predicting muscle forces. Conclusions: This approach offers a versatile, EMG-free alternative for estimating muscle recruitment and force production, providing a more accessible and adaptable tool for muscle force analysis. It has profound implications for enhancing rehabilitation protocols and athletic training, not only broadening the applicability of muscle force estimation in clinical and sports settings but also paving the way for future innovations in biomechanical research.more » « less
-
Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen–GAG cogels. We found significantly lower intensities of aligned collagen in collagen–GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.more » « less
-
Abstract Bite force is a key metric of organismal performance, and expression of masticatory myosin (MHC-M) is associated with high bite force. However, skeletal muscles are multiscale structures, and it remains unclear how adaptations for force production are integrated across scales. We analyzed myosin isoform composition and physiological cross-sectional area of the jaw muscles and measured their dynamic moment armsex vivousing XROMM (X-ray Reconstruction Of Moving Morphology) in six rodent species. We found modifications at all scales in hard biters (grey squirrels) to prioritize force production. Related species (chipmunk, woodchuck and red squirrel) showed a mix of adaptations across scales, with different muscle phenotypes producing equivalent bite force outputs. By contrast, rat and guinea pig showed modifications at all scales consistent with reduced force production. Our results suggest that selection for ecologically relevant traits – including MHC-M expression – occurs at multiple organizational scales within the rodent craniofacial system.more » « less
An official website of the United States government

