For a polygon P with holes in the plane, we denote by ρ(P ) the ratio between the geodesic and the Euclidean diameters of P . It is shown that over all convex polygons with h convex holes, the supremum of ρ(P ) is between Ω(h1/3) and O(h1/2). The upper bound improves
to O(1 + min{h3/4∆, h1/2∆1/2}) if every hole has diameter at most ∆ ·diam2(P ); and to O(1) if every hole is a fat convex polygon. Furthermore, we show that the function g(h) = supP ρ(P ) over convex polygons with h convex holes has the same growth rate as an analogous quantity over geometric triangulations with h vertices when h → ∞
more »
« less
Balanced centroidal power diagrams for redistricting
We consider the problem of political redistricting: given the locations of people in a geographical area (e.g. a US state), the goal is to decompose the area into subareas, called districts, so that the populations of the districts are as close as possible and the districts are ``compact'' and ``contiguous,'' to use the terms referred to in most US state constitutions and/or US Supreme Court rulings.
We study a method that outputs a solution in which each district is the intersection of a convex polygon with the geographical area. The average number of sides per polygon is less than six. The polygons tend to be quite compact. Every two districts differ in population by at most one (so we call the solution balanced).
In fact, the solution is a centroidal power diagram: each polygon has an associated center in ℝ³ such that
* the projection of the center onto the plane z = 0 is the centroid of the locations of people assigned to the polygon, and
* for each person assigned to that polygon, the polygon's center is closest among all centers. The polygons are convex because they are the intersections of 3D Voronoi cells with the plane.
The solution is, in a well-defined sense, a locally optimal solution to the problem of choosing centers in the plane and choosing an assignment of people to those 2-d centers so as to minimize the sum of squared distances subject to the assignment being balanced.
* A practical problem with this approach is that, in real-world redistricting, exact locations of people are unknown. Instead, the input consists of polygons (census blocks) and associated populations. A real redistricting must not split census blocks. We therefore propose a second phase that perturbs the solution slightly so it does not split census blocks. In our experiments, the second phase achieves this while preserving perfect population balance. The district polygons are no longer convex at the fine scale because their boundaries must follow the boundaries of census blocks, but at a coarse scale they preserve the shape of the original polygons.
more »
« less
- PAR ID:
- 10128778
- Date Published:
- Journal Name:
- Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
- Page Range / eLocation ID:
- 389 to 396
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For a polygon P with holes in the plane, we denote by ϱ(P) the ratio between the geodesic and the Euclidean diameters of P. It is shown that over all convex polygons with h convex holes, the supremum of ϱ(P) is between Ω(h1/3) and O(h1/2) . The upper bound improves to O(1+min{h3/4Δ,h1/2Δ1/2}) if every hole has diameter at most Δ⋅diam2(P) ; and to O(1) if every hole is a fat convex polygon. Furthermore, we show that the function g(h)=supPϱ(P) over convex polygons with h convex holes has the same growth rate as an analogous quantity over geometric triangulations with h vertices when h→∞more » « less
-
For a polygon P with holes in the plane, we denote by ϱ(P) the ratio between the geodesic and the Euclidean diameters of P. It is shown that over all convex polygons with h convex holes, the supremum of ϱ(P) is between Ω(h1/3) and O(h1/2) . The upper bound improves to O(1+min{h3/4Δ,h1/2Δ1/2}) if every hole has diameter at most Δ⋅diam2(P) ; and to O(1) if every hole is a fat convex polygon. Furthermore, we show that the function g(h)=supPϱ(P) over convex polygons with h convex holes has the same growth rate as an analogous quantity over geometric triangulations with h vertices when h→∞ .more » « less
-
In the United States, regions (such as states or counties) are frequently divided into districts for the purpose of electing representatives. How the districts are drawn can have a profound effect on who is elected, and drawing the districts to give an advantage to a certain group is known as gerrymandering. It can be surprisingly difficult to detect when gerrymandering is occurring, but one algorithmic method is to compare a current districting plan to a large number of randomly sampled plans to see whether it is an outlier. Recombination Markov chains are often used to do this random sampling: randomly choose two districts, consider their union, and split this union up in a new way. This approach works well in practice and has been widely used, including in litigation, but the theory behind it remains underdeveloped. For example, it is not known if recombination Markov chains are irreducible, that is, if recombination moves suffice to move from any districting plan to any other. Irreducibility of recombination Markov chains can be formulated as a graph problem: for a planar graph G, is the space of all partitions of G into k connected subgraphs (k districts) connected by recombination moves? While the answer is yes when districts can be as small as one vertex, this is not realistic in real-world settings where districts must have approximately balanced populations. Here we fix district sizes to be k_1 +/- 1 vertices, k_2 +/- 1 vertices, ... for fixed k_1, k_2, ..., a more realistic setting. We prove for arbitrarily large triangular regions in the triangular lattice, when there are three simply connected districts, recombination Markov chains are irreducible. This is the first proof of irreducibility under tight district size constraints for recombination Markov chains beyond small or trivial examples. The triangular lattice is the most natural setting in which to first consider such a question, as graphs representing states/regions are frequently triangulated. The proof uses a sweep-line argument, and there is hope it will generalize to more districts, triangulations satisfying mild additional conditions, and other redistricting Markov chains.more » « less
-
Berry, Jonathan ; Shmoys, David ; Cowen, Lenore ; Naumann, Uwe (Ed.)In the United States, regions (such as states or counties) are frequently divided into districts for the purpose of electing representatives. How the districts are drawn can have a profound effect on who's elected, and drawing the districts to give an advantage to a certain group is known as gerrymandering. It can be surprisingly difficult to detect when gerrymandering is occurring, but one algorithmic method is to compare a current districting plan to a large number of randomly sampled plans to see whether it is an outlier. Recombination Markov chains are often used to do this random sampling: randomly choose two districts, consider their union, and split this union up in a new way. This approach works well in practice and has been widely used, including in litigation, but the theory behind it remains underdeveloped. For example, it's not known if recombination Markov chains are irreducible, that is, if recombination moves suffice to move from any districting plan to any other. Irreducibility of recombination Markov chains can be formulated as a graph problem: for a planar graph G, is the space of all partitions of G into κ connected subgraphs (κ districts) connected by recombination moves? While the answer is yes when districts can be as small as one vertex, this is not realistic in real-world settings where districts must have approximately balanced populations. Here we fix district sizes to be κ1 ± 1 vertices, κ2 ± 1 vertices,… for fixed κ1, κ2,…, a more realistic setting. We prove for arbitrarily large triangular regions in the triangular lattice, when there are three simply connected districts, recombination Markov chains are irreducible. This is the first proof of irreducibility under tight district size constraints for recombination Markov chains beyond small or trivial examples. The triangular lattice is the most natural setting in which to first consider such a question, as graphs representing states/regions are frequently triangulated. The proof uses a sweep-line argument, and there is hope it will generalize to more districts, triangulations satisfying mild additional conditions, and other redistricting Markov chains.more » « less