In environments that vary frequently and unpredictably, bet-hedgers can overtake the population. Diversifying bet-hedgers have a diverse set of offspring so that, no matter the conditions they find themselves in, at least some offspring will have high fitness. In contrast, conservative bet-hedgers have a set of offspring that all have an in-between phenotype compared to the specialists. Here, we use an evolutionary algorithm of gene regulatory networks to de novo evolve the two strategies and investigate their relative success in different parameter settings. We found that diversifying bet-hedgers almost always evolved first, but then eventually got outcompeted by conservative bet-hedgers. We argue that even though similar selection pressures apply to the two bet-hedger strategies, conservative bet-hedgers could win due to the robustness of their evolved networks, in contrast to the sensitive networks of the diversifying bet-hedgers. These results reveal an unexplored aspect of the evolution of bet-hedging that could shed more light on the principles of biological adaptation in variable environmental conditions.
more »
« less
A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons
- Award ID(s):
- 1635797
- PAR ID:
- 10128862
- Date Published:
- Journal Name:
- Journal of Hydrology
- Volume:
- 567
- Issue:
- C
- ISSN:
- 0022-1694
- Page Range / eLocation ID:
- 203 to 211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Synechococcusis a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16‐yr hourly time series ofSynechococcusat the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature‐limited in winter and spring, but light‐limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses aboutSynechococcusecophysiology and a working framework for understanding the seasonal controls ofSynechococcuscell abundance in a temperate coastal system.more » « less
-
Abstract Global loss of biodiversity has placed new urgency on the need to understand factors regulating species response to rapid environmental change. While specialists are often less resilient to rapid environmental change than generalists, species‐level analyses may obscure the extent of specialization when locally adapted populations vary in climate tolerances. Until recently, quantification of the degree of climate specialization in migratory birds below the species level was hindered by a lack of genomic and tracking information, but recent technological advances have helped to overcome these barriers. Here we take a genome‐wide genetic approach to mapping population‐specific migratory routes and quantifying niche breadth within genetically distinct populations of a migratory bird, the willow flycatcher (Empidonax traillii), which exhibits variation in the severity of population declines across its breeding range. While our sample size is restricted to the number of genetically distinct populations within the species, our results support the idea that locally adapted populations of the willow flycatcher with narrow climatic niches across seasons are already federally listed as endangered or in steep decline, while populations with broader climatic niches have remained stable in recent decades. Overall, this work highlights the value of quantifying niche breadth within genetically distinct groups across time and space when attempting to understand the factors that facilitate or constrain the response of locally adapted populations to rapid environmental change.more » « less
-
Abstract Microbes play critical roles in dryland ecosystems, driving nutrient cycling, soil stability, and plant interactions. Despite their ecological importance, few studies have examined how microbial communities respond to vegetation changes in arid landscapes. In the northern extent of the Chihuahuan Desert, the encroachment of woody shrubs into grasslands has been occurring since the 1800s, largely driven by extensive livestock grazing and increased drought levels. In this study, we investigated how microbial communities respond to both biotic (i.e., vegetation) and abiotic (i.e., seasonality) factors, how they assemble in a changing landscape, and which taxa may be particularly responsive to shrub encroachment or even facilitating this transformation. We assessed microbial communities using soil surface samples across five distinct seasonal periods in a grassland-to-shrubland gradient in the Jornada Experimental Range in the Chihuahuan Desert through the use of phospholipid fatty-acid analysis and DNA metabarcoding techniques. Our findings reveal that bacterial and fungal biomass are significantly influenced by seasonal changes, with strong correlations to humidity and temperature fluctuations. We also found that fungal community assembly and diversity were highly impacted by vegetation whereas seasons were more impactful on bacteria. Our results support the idea that microbes may be playing a crucial role in facilitating the grassland-to-shrubland transition. Overall, our study highlights the complex interactions between microbial communities and biotic and abiotic factors in dryland systems. These findings are essential for understanding the future of dryland ecosystems undergoing shrub encroachment and provide a critical foundation for guiding restoration efforts, particularly those looking to incorporate microbial-mediated solutions.more » « less
An official website of the United States government

