skip to main content


Title: How Should Online Teachers of English as a Foreign Language (EFL) Write Feedback to Students?
We analyze teachers’ written feedback to students in an online learning environment, specifically a setting in which high school students in Uruguay are learning English as a foreign language. How complex should teachers’ feedback be? Should it be adapted to each student’s English profi- ciency level? How does teacher feedback affect the probability of engaging the student in a conversation? To explore these questions, we conducted both parametric (multilevel modeling) and non-parametric (bootstrapping) analyses of 27,627 messages exchanged between 35 teachers and 1074 students in 2017 and 2018. Our results suggest: (1) Teach- ers should adapt their feedback complexity to their students’ English proficiency level. Students who receive feedback that is too complex or too basic for their level post 13- 15% fewer comments than those who receive adapted feed- back. (2) Feedback that includes a question is associated with higher odds-ratio (17.5-19) of engaging the student in conversation. (3) For students with low English proficiency, slow turnaround (feedback after 1 week) reduces this odds ratio by 0.7. These results have potential implications for online platforms offering foreign language learning services, in which it is crucial to give the best possible learning expe- rience while judiciously allocating teachers’ time.  more » « less
Award ID(s):
1822830
NSF-PAR ID:
10128889
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Educational Data Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Students from less-dominant linguistic backgrounds generally have less opportunity to participate in classroom mathematical discourse compared to their English-dominant peers. An issue raised by mathematics education researchers concerned with issues of equity and opportunities for students is that status quo classroom practices and norms supported by teachers may be less familiar to students from non-dominant linguistic groups, or even detrimental to their classroom participation. Additionally, students who position themselves as doers of mathematics usually come from dominant cultural and linguistic groups (Abreu & Cline, 2002; Hand, 2012), potentially disposing students to perceive classroom mathematics learning through the lens of dominant cultural norms and practices. Thus, students who do not come from dominant linguistic backgrounds might perceive the mathematics classroom differently than their English dominant peers. However, less research has been conducted on how mathematics teachers attend to or notice norms around language and introduce new ones that encourage a multitude of linguistic practices, therefore heightening student participation. Heightening student participation can have implications for students being more likely to identify with mathematics. Additionally, examining students’ participation when using a multitude of linguistic practices or translanguaging is helpful for teachers attending to their own practice to support emerging bilingual students and bilingual students when engaging in mathematical sensemaking. 
    more » « less
  2. Background/Context:

    Computer programming is rarely accessible to K–12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive knowledge and experiences in computer programming can grant them opportunities to realize their abilities and potential in this field.

    Purpose/Focus of Study:

    This study focuses on the exploration of the kind of relationship that bilingual Latinx students developed with themselves and computer programming and mathematics (CPM) practices through their participation in a CPM after-school program, first as students and then as cofacilitators teaching CPM practices to other middle school peers.

    Setting:

    An after-school program, Advancing Out-of-School Learning in Mathematics and Engineering (AOLME), was held at two middle schools located in rural and urban areas in the Southwest. It was designed to support an inclusive cultural environment that nurtured students’ opportunities to learn CPM practices through the inclusion of languages (Spanish and English), tasks, and participants congruent to students in the program. Students learned how to represent, design, and program digital images and videos using a sequence of 2D arrays of hexadecimal numbers with Python on a Raspberry Pi computer. The six bilingual cofacilitators attended Levels 1 and 2 as students and were offered the opportunity to participate as cofacilitators in the next implementation of Level 1.

    Research Design:

    This longitudinal case study focused on analyzing the experiences and shifts (if any) of students who participated as cofacilitators in AOLME. Their narratives were analyzed collectively, and our analysis describes the experiences of the cofacilitators as a single case study (with embedded units) of what it means to be a bilingual cofacilitator in AOLME. Data included individual exit interviews of the six cofacilitators and their focus groups (30–45 minutes each), an adapted 20-item CPM attitude 5-point Likert scale, and self-report from each of them. Results from attitude scales revealed cofacilitators’ greater initial and posterior connections to CPM practices. The self-reports on CPM included two number lines (0–10) for before and after AOLME for students to self-assess their liking and knowledge of CPM. The numbers were used as interview prompts to converse with students about experiences. The interview data were analyzed qualitatively and coded through a contrast-comparative process regarding students’ description of themselves, their experiences in the program, and their perception of and relationship toward CPM practices.

    Findings:

    Findings indicated that students had continued/increased motivation and confidence in CPM as they engaged in a journey as cofacilitators, described through two thematic categories: (a) shifting views by personally connecting to CPM, and (b) affirming CPM practices through teaching. The shift in connecting to CPM practices evolved as students argued that they found a new way of learning mathematics, in that they used mathematics as a tool to create videos and images that they programmed by using Python while making sense of the process bilingually (Spanish and English). This mathematics was viewed by students as high level, which in turned helped students gain self-confidence in CPM practices. Additionally, students affirmed their knowledge and confidence in CPM practices by teaching them to others, a process in which they had to mediate beyond the understanding of CPM practices. They came up with new ways of explaining CPM practices bilingually to their peers. In this new role, cofacilitators considered the topic and language, and promoted a communal support among the peers they worked with.

    Conclusions/Recommendations:

    Bilingual middle school students can not only program, but also teach bilingually and embrace new roles with nurturing support. Schools can promote new student roles, which can yield new goals and identities. There is a great need to redesign the school mathematics curriculum as a discipline that teenagers can use and connect with by creating and finding things they care about. In this way, school mathematics can support a closer “fit” with students’ identification with the world of mathematics. Cofacilitators learned more about CPM practices by teaching them, extending beyond what was given to them, and constructing new goals that were in line with a sophisticated knowledge and shifts in the practice. Assigned responsibility in a new role can strengthen students’ self-image, agency, and ways of relating to mathematics.

     
    more » « less
  3. This study aims to investigate the collaboration processes of immigrant families as they search for online information together. Immigrant English-language learning adults of lower socioeconomic status often work collaboratively with their children to search the internet. Family members rely on each other’s language and digital literacy skills in this collaborative process known as online search and brokering (OSB). While previous work has identified ecological factors that impact OSB, research has not yet distilled the specific learning processes behind such collaborations. Design/methodology/approach: For this study, the authors adhere to practices of a case study examination. This study’s participants included parents, grandparents and children aged 10–17 years. Most adults were born in Mexico, did not have a college-degree, worked in service industries and represented a lower-SES population. This study conducted two to three separate in-home family visits per family with interviews and online search tasks. Findings: From a case study analysis of three families, this paper explores the funds of knowledge, resilience, ecological support and challenges that children and parents face, as they engage in collaborative OSB experiences. This study demonstrates how in-home computer-supported collaborative processes are often informal, social, emotional and highly relevant to solving information challenges. Research limitations/implications: An intergenerational OSB process is different from collaborative online information problem-solving that happens between classroom peers or coworkers. This study’s research shows how both parents and children draw on their funds of knowledge, resilience and ecological support systems when they search collaboratively, with and for their family members, to problem solve. This is a case study of three families working in collaboration with each other. This case study informs analytical generalizations and theory-building rather than statistical generalizations about families. Practical implications: Designers need to recognize that children and youth are using the same tools as adults to seek high-level critical information. This study’s model suggests that if parents and children are negotiating information seeking with the same technology tools but different funds of knowledge, experience levels and skills, the presentation of information (e.g. online search results, information visualizations) needs to accommodate different levels of understanding. This study recommends designers work closely with marginalized communities through participatory design methods to better understand how interfaces and visuals can help accommodate youth invisible work. Social implications: The authors have demonstrated in this study that learning and engaging in family online searching is not only vital to the development of individual and digital literacy skills, it is a part of family learning. While community services, libraries and schools have a responsibility to support individual digital and information literacy development, this study’s model highlights the need to recognize funds of knowledge, family resiliency and asset-based learning. Schools and teachers should identify and harness youth invisible work as a form of learning at home. The authors believe educators can do this by highlighting the importance of information problem solving in homes and youth in their families. Libraries and community centers also play a critical role in supporting parents and adults for technical assistance (e.g. WiFi access) and information resources. Originality/value: This study’s work indicates new conditions fostering productive joint media engagement (JME) around OSB. This study contributes a generative understanding that promotes studying and designing for JME, where family responsibility is the focus.

     
    more » « less
  4. null (Ed.)
    Engineering instructors often use physical manipulatives such as foam beams, rolling cylinders, and large representations of axis systems to demonstrate mechanics concepts and help students visualize systems. Additional benefits are possible when manipulatives are in the hands of individual students or small teams of students who can explore concepts at their own pace and focus on their specific points of confusion. Online learning modalities require new strategies to promote spatial visualization and kinesthetic learning. Potential solutions include creating videos of the activities, using CAD models to demonstrate the principles, programming computer simulations, and providing hands-on manipulatives to students for at-home use. This Work-in-Progress paper discusses our experiences with this last strategy in statics courses two western community colleges and a western four-year university where we supplied students with their own hands-on kits. We have previously reported on the successful implementation of a hands-on statics kit consisting of 3D printed components and standard hardware. The kit was originally designed for use by teams of students during class to engage with topics such as vectors, moments, and rigid body equilibrium. With the onset of the COVID-19 pandemic and shift to online instruction, the first author developed a scaled down version of the kit for at-home use by individual students and modified the associated activity worksheets accordingly. For the community college courses, local students picked up their models at the campus bookstore. We also shipped some of the kits to students who were unable to come to campus, including some in other countries. Due to problems with printing and availability of materials, only 18 kits were available for the class of 34 students at the university implementation. Due to this circumstance, students were placed in teams and asked to work together virtually, one student showing the kit to the other student as they worked through the worksheet prompts. One community college instructor took this approach as well for a limited number of international students who did not receive their kits in a timely manner due to shipping problems. Two instructors assigned the hands-on kits as asynchronous learning activities in their respective online courses, with limited guidance on their use. The third used the kits primarily in synchronous online class meetings. We found that students’ reaction to the models varied by pilot site and presume that implementation differences contributed to this variation. In all cases, student feedback was less positive than it has been for face-to-face courses that used the models from which the take home kit was adapted. Our main conclusion is that implementation matters. Doing hands-on learning in an online course requires some fundamental rethinking about how the learning is structured and scaffolded. 
    more » « less
  5. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less