skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical and virtual implementation of closed-loop design for model updating
A recently proposed implementation of output feedback based on signal processing eliminates the practical overhead of physical operation in closed-loop. Additionally, the ,virtual implementation facilitates realization of of multiple closed-loop systems from a single test in open loop, allows for complex gains, and removes the constraint of closed-loop stability. Care, however, must be exercised in the design of the closed-loop systems as the errors in these are governed by the intrinsic approximations in the open-loop identification. The present paper offers an examination of this item when the closed-loop systems are designed for parameter estimation in updating numerical models of structural systems. The differences between physical realization and the proposed virtual implementation are discussed, and the pivotal points outlined are demonstrated in the context of the numerical examination with a structural system.  more » « less
Award ID(s):
1634277
PAR ID:
10128918
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Lecture notes in mechanical engineering
ISSN:
2195-4364
Page Range / eLocation ID:
363-371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The set of equations to be solved for parameter estimation in model updating has no unique solution when, as will often be the case in structural applications, the dimensionality of the model exceeds the number of target parameters estimated from experiments. One approach for enlarging the target space is to create closed-loop systems that, in addition, can be designed with pole sensitivities favorable for updating the model. The present paper will focus on designing gains for model updating using a recently proposed virtual implementation of output feedback, which allows computation of several closed-loop systems, from a single open loop realization and removes the constraint of closed-loop stability. The gains are designed through an eigenstructure assignment procedure, in which the model parameters of interest in the updating are divided into two different classes; one where the pole sensitivities with respect to the parameters are to be enhanced and one where they are to be reduced. A numerical example with a structural system is presented that demonstrates the merit of the proposed gain design procedure. 
    more » « less
  2. Processing signals from open-loop system realizations can replace real-time operation using actuators in the design of closed-loop eigenstructures. One merit of the signal processing-based implementation is that it, in principle, allows virtual compensators of user-defined model order since the closed-loop systems are not to be realized during physical testing. The present paper explores the implication of the virtual compensator order in terms of the Fisher information on unknown parameters to be estimated in a model updating context. A numerical example with a structural system of engineering interest is presented that demonstrates the basic points outlined in the paper. 
    more » « less
  3. null (Ed.)
    Biofeedback systems have been extensively used in walking exercises for gait improvement. Past research has focused on modulating the wearer’s cadence, gait variability, or symmetry, but none of the previous works has addressed the problem of inducing a desired walking speed in the wearer. In this paper, we present a new, minimally obtrusive wearable biofeedback system (WBS) that uses closed-loop vibrotactile control to elicit desired changes in the wearer’s walking speed, based on the predicted user response to anticipatory and delayed feedback. The performance of the proposed control was compared to conventional open-loop rhythmic vibrotactile stimulation with N = 10 healthy individuals who were asked to complete a set of walking tasks along an oval path. The closed-loop vibrotactile control consistently demonstrated better performance than the open-loop control in inducing desired changes in the wearer’s walking speed, both with constant and with time-varying target walking speeds. Neither open-loop nor closed-loop stimuli affected natural gait significantly, when the target walking speed was set to the individual’s preferred walking speed. Given the importance of walking speed as a summary indicator of health and physical performance, the closed-loop vibrotactile control can pave the way for new technology-enhanced protocols for gait rehabilitation. 
    more » « less
  4. Abstract This study provides an experimental validation of a multiple‐input multiple‐output (MIMO) model predictive control (MPC) strategy, coupled with dynamic risk modeling, to address two critical aspects of proton exchange membrane water electrolysis (PEMWE) operation: (i) process safety, by mitigating temperature imbalances, and (ii) system performance, through precise hydrogen production control. A cyber‐physical platform was developed for real‐time monitoring, state‐space modeling and validation, risk metrics analysis, control implementation, and visualization. Open‐loop experiments revealed limitations in managing thermal gradients, underscoring the need for feedback operating strategies. The proposed closed‐loop MPC approach achieved precise tracking of hydrogen production while maintaining safety by ensuring temperature stability. Moreover, the dynamic risk metrics show how thermal risk evolves with temperature and offer guidance for decision‐making. These findings demonstrate the effectiveness of MIMO MPC in enhancing the operational safety and efficiency of PEMWE systems, providing a foundation for scalable and sustainable hydrogen production. 
    more » « less
  5. This paper develops a closed-loop approach for ink-jet 3D printing. The control design is based on a distributed model predictive control scheme, which can handle constraints (such as droplet volume) as well as the large-scale nature of the problem. The high resolution of ink-jet 3D printing make centralized methods extremely time-consuming, thus a distributed implementation of the controller is developed. First a graph-based height evolution model that can capture the liquid flow dynamics is proposed. Then, a scalable closed-loop control algorithm is designed based on the model using Distributed MPC, that reduces computation time significantly. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing Centralized MPC methods through simulation results. 
    more » « less