skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SYMMETRIC MONOIDAL G-CATEGORIES AND THEIR STRICTIFICATION
Abstract We give an operadic definition of a genuine symmetric monoidal $$G$$-category, and we prove that its classifying space is a genuine $$E_\infty $$G$-space. We do this by developing some very general categorical coherence theory. We combine results of Corner and Gurski, Power and Lack to develop a strictification theory for pseudoalgebras over operads and monads. It specializes to strictify genuine symmetric monoidal $$G$$-categories to genuine permutative $$G$$-categories. All of our work takes place in a general internal categorical framework that has many quite different specializations. When $$G$$ is a finite group, the theory here combines with previous work to generalize equivariant infinite loop space theory from strict space level input to considerably more general category level input. It takes genuine symmetric monoidal $$G$$-categories as input to an equivariant infinite loop space machine that gives genuine $$\Omega $$-$$G$-spectra as output.  more » « less
Award ID(s):
1710379 1709302
PAR ID:
10128938
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Quarterly Journal of Mathematics
ISSN:
0033-5606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenlees, John (Ed.)
    Let G be a finite group. We give Quillen equivalent models for the category of G–spectra as categories of spectrally enriched functors from explicitly described domain categories to nonequivariant spectra. Our preferred model is based on equivariant infinite loop space theory applied to elementary categorical data. It recasts equivariant stable homotopy theory in terms of point–set-level categories of G–spans and nonequivariant spectra. We also give a more topologically grounded model based on equivariant Atiyah duality. 
    more » « less
  2. We introduce a theory of stratifications of noncommutative stacks (i.e., presentable stable ∞<#comment/> \infty -categories), and we prove a reconstruction theorem that expresses them in terms of their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal structures, and with more general operadic structures such as E n \mathbb {E}_n -monoidal structures. We also provide a suite of fundamental operations for constructing new stratifications from old ones: restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a categorification of Möbius inversion. Our main application is to equivariant stable homotopy theory: for any compact Lie group G G , we give a symmetric monoidal stratification of genuine G G -spectra. In the case that G G is finite, this expresses genuine G G -spectra in terms of their geometric fixedpoints (as homotopy-equivariant spectra) and gluing data therebetween (which are given by proper Tate constructions). We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy theory. 
    more » « less
  3. We rework and generalize equivariant infinite loop space theory, which shows how to construct G G -spectra from G G -spaces with suitable structure. There is a classical version which gives classical Ω<#comment/> \Omega - G G -spectra for any topological group G G , but our focus is on the construction of genuine Ω<#comment/> \Omega - G G -spectra when G G is finite. We also show what is and is not true when G G is a compact Lie group. We give new information about the Segal and operadic equivariant infinite loop space machines, supplying many details that are missing from the literature, and we prove by direct comparison that the two machines give equivalent output when fed equivalent input. The proof of the corresponding nonequivariant uniqueness theorem, due to May and Thomason, works for classical G G -spectra for general G G but fails for genuine G G -spectra. Even in the nonequivariant case, our comparison theorem is considerably more precise, giving an illuminating direct point-set level comparison. We have taken the opportunity to update this general area, equivariant and nonequivariant, giving many new proofs, filling in some gaps, and giving a number of corrections to results and proofs in the literature. 
    more » « less
  4. A cubic space is a vector space equipped with a symmetric trilinear form. Using categorical Fraïssé theory, we show that there is a universal ultrahomogeneous cubic space V of countable infinite dimension, which is unique up to isomorphism. The automorphism group G of V is quite large and, in some respects, similar to the infinite orthogonal group. We show that G is a linear-oligomorphic group (a class of groups we introduce), and we determine the algebraic representation theory of G. We also establish some model-theoretic results about V: it is ω-categorical (in a modified sense), and has quantifier elimination (for vectors). Our results are not specific to cubic spaces, and hold for a very general class of tensor spaces; we view these spaces as linear analogs of the relational structures studied in model theory. 
    more » « less
  5. Abstract The purpose of this paper and its sequel is to develop the geometry built from the commutative algebras that naturally appear as the homology of differential graded algebras and, more generally, as the homotopy of algebras in spectra. The commutative algebras in question are those in the symmetric monoidal category of graded abelian groups, and, being commutative, they form the affine building blocks of a geometry, as commutative rings form the affine building blocks of algebraic geometry. We name this geometry Dirac geometry, because the grading exhibits the hallmarks of spin in that it is a remnant of the internal structure encoded byanima, it distinguishes symmetric and anti-symmetric behavior, and the coherent cohomology of Dirac schemes and Dirac stacks, which we develop in the sequel, admits half-integer Serre twists. Thus, informally, Dirac geometry constitutes a “square root” of$$\mathbb {G}_m$$ G m -equivariant algebraic geometry. 
    more » « less