skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Equivariant Infinite Loop Space Theory: The Space Level Story
We rework and generalize equivariant infinite loop space theory, which shows how to construct G G -spectra from G G -spaces with suitable structure. There is a classical version which gives classical Ω<#comment/> \Omega - G G -spectra for any topological group G G , but our focus is on the construction of genuine Ω<#comment/> \Omega - G G -spectra when G G is finite. We also show what is and is not true when G G is a compact Lie group. We give new information about the Segal and operadic equivariant infinite loop space machines, supplying many details that are missing from the literature, and we prove by direct comparison that the two machines give equivalent output when fed equivalent input. The proof of the corresponding nonequivariant uniqueness theorem, due to May and Thomason, works for classical G G -spectra for general G G but fails for genuine G G -spectra. Even in the nonequivariant case, our comparison theorem is considerably more precise, giving an illuminating direct point-set level comparison. We have taken the opportunity to update this general area, equivariant and nonequivariant, giving many new proofs, filling in some gaps, and giving a number of corrections to results and proofs in the literature.  more » « less
Award ID(s):
1943925 2204365
PAR ID:
10621387
Author(s) / Creator(s):
; ;
Publisher / Repository:
AMER MATHEMATICAL SOC
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
305
Issue:
1540
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a theory of stratifications of noncommutative stacks (i.e., presentable stable ∞<#comment/> \infty -categories), and we prove a reconstruction theorem that expresses them in terms of their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal structures, and with more general operadic structures such as E n \mathbb {E}_n -monoidal structures. We also provide a suite of fundamental operations for constructing new stratifications from old ones: restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a categorification of Möbius inversion. Our main application is to equivariant stable homotopy theory: for any compact Lie group G G , we give a symmetric monoidal stratification of genuine G G -spectra. In the case that G G is finite, this expresses genuine G G -spectra in terms of their geometric fixedpoints (as homotopy-equivariant spectra) and gluing data therebetween (which are given by proper Tate constructions). We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy theory. 
    more » « less
  2. We give a fully faithful integral model for simply connected finite complexes in terms of E ∞<#comment/> \mathbb {E}_{\infty } -ring spectra and the Nikolaus–Scholze Frobenius. The key technical input is the development of a homotopy coherent Frobenius action on a certain subcategory of p p -complete E ∞<#comment/> \mathbb {E}_{\infty } -rings for each prime p p . Using this, we show that the data of a simply connected finite complex X X is the data of its Spanier-Whitehead dual, as an E ∞<#comment/> \mathbb {E}_{\infty } -ring, together with a trivialization of the Frobenius action after completion at each prime. In producing the above Frobenius action, we explore two ideas which may be of independent interest. The first is a more general action of Frobenius in equivariant homotopy theory; we show that a version of Quillen’s Q Q -construction acts on the ∞<#comment/> \infty -category of E ∞<#comment/> \mathbb {E}_{\infty } -rings with “genuine equivariant multiplication,” which we call global algebras. The second is a “pre-group-completed” variant of algebraic K K -theory which we callpartial K K -theory. We develop the notion of partial K K -theory and give a computation of the partial K K -theory of F p \mathbb {F}_p up to p p -completion. 
    more » « less
  3. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  4. Let Σ<#comment/> \Sigma be a smooth Riemannian manifold, Γ<#comment/> ⊂<#comment/> Σ<#comment/> \Gamma \subset \Sigma a smooth closed oriented submanifold of codimension higher than 2 2 and T T an integral area-minimizing current in Σ<#comment/> \Sigma which bounds Γ<#comment/> \Gamma . We prove that the set of regular points of T T at the boundary is dense in Γ<#comment/> \Gamma . Prior to our theorem the existence of any regular point was not known, except for some special choice of Σ<#comment/> \Sigma and Γ<#comment/> \Gamma . As a corollary of our theorem we answer to a question in Almgren’sAlmgren’s big regularity paperfrom 2000 showing that, if Γ<#comment/> \Gamma is connected, then T T has at least one point p p of multiplicity 1 2 \frac {1}{2} , namely there is a neighborhood of the point p p where T T is a classical submanifold with boundary Γ<#comment/> \Gamma ; we generalize Almgren’s connectivity theorem showing that the support of T T is always connected if Γ<#comment/> \Gamma is connected; we conclude a structural result on T T when Γ<#comment/> \Gamma consists of more than one connected component, generalizing a previous theorem proved by Hardt and Simon in 1979 when Σ<#comment/> = R m + 1 \Sigma = \mathbb R^{m+1} and T T is m m -dimensional. 
    more » « less
  5. Let Γ<#comment/> \Gamma be a countable abelian group. An (abstract) Γ<#comment/> \Gamma -system X \mathrm {X} - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of Γ<#comment/> \Gamma - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor Z 2 ( X ) \mathrm {Z}^2(\mathrm {X}) . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian Γ<#comment/> \Gamma , namely that they are the inverse limit of translational systems G n / Λ<#comment/> n G_n/\Lambda _n arising from locally compact nilpotent groups G n G_n of nilpotency class 2 2 , quotiented by a lattice Λ<#comment/> n \Lambda _n . Results of this type were previously known when Γ<#comment/> \Gamma was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers U 3 ( G ) U^3(G) norm for arbitrary finite abelian groups G G
    more » « less