skip to main content


Title: Kit-bashing camera code: Lessons in developing auto-assist tools to complement the GIGAmacro Photography System
Recent advancements in photography hardware and software, such as the GIGAmacro Photography System, allow collections workers to capture thousands of high-resolution, wide focal-depth photographs a day with minimal manual effort. The front-end work of camera setup is the most time-consuming task, with the bulk time spent specifying where in the tray the camera should photograph. The GIGAmacro software package does not include a tool to reduce or help automate this setup, so we developed our own. The tool we designed is an intuitive user interface that is linked to scripted processes to semi-automate the setup process. On average, this tool has decreased our camera setup time by 98.5%. The development process involved a feedback loop of gathering comments and suggestions, implementing features, and testing with different end-users. The resulting auto-assist tool is designed to be accessible for workers with varying levels of experience and is wholly contained in one Excel document for portable use. We chose to develop our camera setup tool in Excel due to broad user familiarity and presence of necessary supporting components. Both advantages greatly shortened development time. Additionally, Excel allowed us to change measurement or calculation numbers for the camera on the fly without having to recompile and/or install a new executable. The files that contain the camera setup runs (now numbering in the hundreds after two years) can be saved and reloaded easily on any of our network computers. This Excel-based, custom tool complements the extensive automated process that GIGAmacro provides. The tool fits into the front-end workflow of the entire digitization process, reduces manual setup time by almost two orders of magnitude, and can be employed by other research collections interested in digitizing thousands of microfossils. The software tool is freely available at https://github.com/alex-zimmerman/GigaMacroAssist along with user notes on how to employ and/or adapt the tool in other collections.  more » « less
Award ID(s):
1702289
NSF-PAR ID:
10129036
Author(s) / Creator(s):
Date Published:
Journal Name:
Making the Case for Natural History Collections: SPNHC 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Natural history collections are often considered remote and inaccessible without special permission from curators. Digitization of these collections can make them much more accessible to researchers, educators, and general enthusiasts alike, thereby removing the stigma of a lonely specimen on a dusty shelf in the back room of a museum that will never again see the light of day. We are in the process of digitizing the microfossils of the Indiana University Paleontology collection using the GIGAmacro Magnify2 Robotic Imaging System. This suite of software and hardware allows us to automate photography and post-production of high resolution images, thereby severely reducing the amount of time and labor needed to serve the data. Our hardware includes a Canon T6i 24 megapixel DSLR, a Canon MPE 65mm 1X to 5X lens, and a Canon MT26EX Dual Flash, all mounted on a lead system made with high performance precision IGUS Drylin anodized aluminum. The camera and its mount move over the tray of microfossil slides using bearings and rails. The software includes the GIGAmacro Capture Software (photography), GIGAmacro Viewer Software (display and annotation), Zerene Stacker (focus stacking), and Autopano GIGA (stitching). All of the metadata is kept in association with the images, uploaded to Notes from Nature, transcribed by community scientists, then everything is stored in the image archive, Imago. In ~460 hours we have photographed ~10,500 slides and have completed ~65% of our microfossil collection. Using the GIGAmacro system we are able update and store collection information in a more secure and longer lasting digital form. The advantages of this system are numerable and highly recommended for museums who are looking to bring their collections out of the shadows and back into the light. 
    more » « less
  2. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  3. In modern industrial manufacturing processes, robotic manipulators are routinely used in the assembly, packaging, and material handling operations. During production, changing end-of-arm tooling is frequently necessary for process flexibility and reuse of robotic resources. In conventional operation, a tool changer is sometimes employed to load and unload end-effectors, however, the robot must be manually taught to locate the tool changers by operators via a teach pendant. During tool change teaching, the operator takes considerable effort and time to align the master and tool side of the coupler by adjusting the motion speed of the robotic arm and observing the alignment from different viewpoints. In this paper, a custom robotic system, the NeXus, was programmed to locate and change tools automatically via an RGB-D camera. The NeXus was configured as a multi-robot system for multiple tasks including assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobot prototypes. Thus, different tools are employed by an industrial robotic arm to position grippers, printers, and other types of end-effectors in the workspace. To improve the precision and cycle-time of the robotic tool change, we mounted an eye-in-hand RGB-D camera and employed visual servoing to automate the tool change process. We then compared the teaching time of the tool location using this system and compared the cycle time with those of 6 human operators in the manual mode. We concluded that the tool location time in automated mode, on average, more than two times lower than the expert human operators. 
    more » « less
  4. Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per case with one report per case. The data is organized by tissue type as shown below: Filenames: tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_0a001_00123456_lvl0001_s000.svs tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_00123456.docx Explanation: tudp: root directory of the corpus v1.0.0: version number of the release svs: the image data type gastro: the type of tissue 000001: six-digit sequence number used to control directory complexity 00123456: 8-digit patient MRN 2015_03_05: the date the specimen was captured 0s15_12345: the clinical case name 0s15_12345_0a001_00123456_lvl0001_s000.svs: the actual image filename consisting of a repeat of the case name, a site code (e.g., 0a001), the type and depth of the cut (e.g., lvl0001) and a token number (e.g., s000) 0s15_12345_00123456.docx: the filename for the corresponding case report We currently recognize fifteen tissue types in the first installment of the corpus. The raw image data is stored in Aperio’s “.svs” format, which is a multi-layered compressed JPEG format [3,7]. Pathology reports containing a summary of how a pathologist interpreted the slide are also provided in a flat text file format. A more complete summary of the demographics of this pilot corpus will be presented at the conference. Another goal of this poster presentation is to share our experiences with the larger community since many of these details have not been adequately documented in scientific publications. There are quite a few obstacles in collecting this data that have slowed down the process and need to be discussed publicly. Our backlog of slides dates back to 1997, meaning there are a lot that need to be sifted through and discarded for peeling or cracking. Additionally, during scanning a slide can get stuck, stalling a scan session for hours, resulting in a significant loss of productivity. Over the past two years, we have accumulated significant experience with how to scan a diverse inventory of slides using the Aperio AT2 high-volume scanner. We have been working closely with the vendor to resolve many problems associated with the use of this scanner for research purposes. This scanning project began in January of 2018 when the scanner was first installed. The scanning process was slow at first since there was a learning curve with how the scanner worked and how to obtain samples from the hospital. From its start date until May of 2019 ~20,000 slides we scanned. In the past 6 months from May to November we have tripled that number and how hold ~60,000 slides in our database. This dramatic increase in productivity was due to additional undergraduate staff members and an emphasis on efficient workflow. The Aperio AT2 scans 400 slides a day, requiring at least eight hours of scan time. The efficiency of these scans can vary greatly. When our team first started, approximately 5% of slides failed the scanning process due to focal point errors. We have been able to reduce that to 1% through a variety of means: (1) best practices regarding daily and monthly recalibrations, (2) tweaking the software such as the tissue finder parameter settings, and (3) experience with how to clean and prep slides so they scan properly. Nevertheless, this is not a completely automated process, making it very difficult to reach our production targets. With a staff of three undergraduate workers spending a total of 30 hours per week, we find it difficult to scan more than 2,000 slides per week using a single scanner (400 slides per night x 5 nights per week). The main limitation in achieving this level of production is the lack of a completely automated scanning process, it takes a couple of hours to sort, clean and load slides. We have streamlined all other aspects of the workflow required to database the scanned slides so that there are no additional bottlenecks. To bridge the gap between hospital operations and research, we are using Aperio’s eSM software. Our goal is to provide pathologists access to high quality digital images of their patients’ slides. eSM is a secure website that holds the images with their metadata labels, patient report, and path to where the image is located on our file server. Although eSM includes significant infrastructure to import slides into the database using barcodes, TUH does not currently support barcode use. Therefore, we manage the data using a mixture of Python scripts and manual import functions available in eSM. The database and associated tools are based on proprietary formats developed by Aperio, making this another important point of community-wide discussion on how best to disseminate such information. Our near-term goal for the TUDP Corpus is to release 100,000 slides by December 2020. We hope to continue data collection over the next decade until we reach one million slides. We are creating two pilot corpora using the first 50,000 slides we have collected. The first corpus consists of 500 slides with a marker stain and another 500 without it. This set was designed to let people debug their basic deep learning processing flow on these high-resolution images. We discuss our preliminary experiments on this corpus and the challenges in processing these high-resolution images using deep learning in [3]. We are able to achieve a mean sensitivity of 99.0% for slides with pen marks, and 98.9% for slides without marks, using a multistage deep learning algorithm. While this dataset was very useful in initial debugging, we are in the midst of creating a new, more challenging pilot corpus using actual tissue samples annotated by experts. The task will be to detect ductal carcinoma (DCIS) or invasive breast cancer tissue. There will be approximately 1,000 images per class in this corpus. Based on the number of features annotated, we can train on a two class problem of DCIS or benign, or increase the difficulty by increasing the classes to include DCIS, benign, stroma, pink tissue, non-neoplastic etc. Those interested in the corpus or in participating in community-wide discussions should join our listserv, nedc_tuh_dpath@googlegroups.com, to be kept informed of the latest developments in this project. You can learn more from our project website: https://www.isip.piconepress.com/projects/nsf_dpath. 
    more » « less
  5. null (Ed.)
    Abstract Background Continuous enzyme kinetic assays are often used in high-throughput applications, as they allow rapid acquisition of large amounts of kinetic data and increased confidence compared to discontinuous assays. However, data analysis is often rate-limiting in high-throughput enzyme assays, as manual inspection and selection of a linear range from individual kinetic traces is cumbersome and prone to user error and bias. Currently available software programs are specialized and designed for the analysis of complex enzymatic models. Despite the widespread use of initial rate determination for processing kinetic data sets, no simple and automated program existed for rapid analysis of initial rates from continuous enzyme kinetic traces. Results An Interactive Continuous Enzyme Kinetics Analysis Tool (ICEKAT) was developed for semi-automated calculation of initial rates from continuous enzyme kinetic traces with particular application to the evaluation of Michaelis-Menten and EC 50 /IC 50 kinetic parameters, as well as the results of high-throughput screening assays. ICEKAT allows users to interactively fit kinetic traces using convenient browser-based selection tools, ameliorating tedious steps involved in defining ranges to fit in general purpose programs like Microsoft Excel and Graphpad Prism, while still maintaining simplicity in determining initial rates. As a test case, we quickly analyzed over 500 continuous enzyme kinetic traces resulting from experimental data on the response of the protein lysine deacetylase SIRT1 to small-molecule activators. Conclusions ICEKAT allows simultaneous visualization of individual initial rate fits and the resulting Michaelis-Menten or EC 50 /IC 50 kinetic model fits, as well as hits from high-throughput screening assays. In addition to serving as a convenient program for practicing enzymologists, ICEKAT is also a useful teaching aid to visually demonstrate in real-time how incorrect initial rate fits can affect calculated Michaelis-Menten or EC 50 /IC 50 kinetic parameters. For the convenience of the research community, we have made ICEKAT freely available online at https://icekat.herokuapp.com/icekat . 
    more » « less