Natural history collections are often considered remote and inaccessible without special permission from curators. Digitization of these collections can make them much more accessible to researchers, educators, and general enthusiasts alike, thereby removing the stigma of a lonely specimen on a dusty shelf in the back room of a museum that will never again see the light of day. We are in the process of digitizing the microfossils of the Indiana University Paleontology collection using the GIGAmacro Magnify2 Robotic Imaging System. This suite of software and hardware allows us to automate photography and post-production of high resolution images, thereby severely reducing the amount of time and labor needed to serve the data. Our hardware includes a Canon T6i 24 megapixel DSLR, a Canon MPE 65mm 1X to 5X lens, and a Canon MT26EX Dual Flash, all mounted on a lead system made with high performance precision IGUS Drylin anodized aluminum. The camera and its mount move over the tray of microfossil slides using bearings and rails. The software includes the GIGAmacro Capture Software (photography), GIGAmacro Viewer Software (display and annotation), Zerene Stacker (focus stacking), and Autopano GIGA (stitching). All of the metadata is kept in association with the images, uploadedmore »
Kit-bashing camera code: Lessons in developing auto-assist tools to complement the GIGAmacro Photography System
Recent advancements in photography hardware and software, such as the GIGAmacro Photography System, allow collections workers to capture thousands of high-resolution, wide focal-depth photographs a day with minimal manual effort. The front-end work of camera setup is the most time-consuming task, with the bulk time spent specifying where in the tray the camera should photograph. The GIGAmacro software package does not include a tool to reduce or help automate this setup, so we developed our own. The tool we designed is an intuitive user interface that is linked to scripted processes to semi-automate the setup process. On average, this tool has decreased our camera setup time by 98.5%. The development process involved a feedback loop of gathering comments and suggestions, implementing features, and testing with different end-users. The resulting auto-assist tool is designed to be accessible for workers with varying levels of experience and is wholly contained in one Excel document for portable use.
We chose to develop our camera setup tool in Excel due to broad user familiarity and presence of necessary supporting components. Both advantages greatly shortened development time. Additionally, Excel allowed us to change measurement or calculation numbers for the camera on the fly without having to recompile more »
- Award ID(s):
- 1702289
- Publication Date:
- NSF-PAR ID:
- 10129036
- Journal Name:
- Making the Case for Natural History Collections: SPNHC 2019
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
-
In modern industrial manufacturing processes, robotic manipulators are routinely used in the assembly, packaging, and material handling operations. During production, changing end-of-arm tooling is frequently necessary for process flexibility and reuse of robotic resources. In conventional operation, a tool changer is sometimes employed to load and unload end-effectors, however, the robot must be manually taught to locate the tool changers by operators via a teach pendant. During tool change teaching, the operator takes considerable effort and time to align the master and tool side of the coupler by adjusting the motion speed of the robotic arm and observing the alignment from different viewpoints. In this paper, a custom robotic system, the NeXus, was programmed to locate and change tools automatically via an RGB-D camera. The NeXus was configured as a multi-robot system for multiple tasks including assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobot prototypes. Thus, different tools are employed by an industrial robotic arm to position grippers, printers, and other types of end-effectors in the workspace. To improve the precision and cycle-time of the robotic tool change, we mounted an eye-in-hand RGB-D camera and employed visual servoing to automate the tool change process. We thenmore »
-
Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per casemore »
-
Abstract Background Continuous enzyme kinetic assays are often used in high-throughput applications, as they allow rapid acquisition of large amounts of kinetic data and increased confidence compared to discontinuous assays. However, data analysis is often rate-limiting in high-throughput enzyme assays, as manual inspection and selection of a linear range from individual kinetic traces is cumbersome and prone to user error and bias. Currently available software programs are specialized and designed for the analysis of complex enzymatic models. Despite the widespread use of initial rate determination for processing kinetic data sets, no simple and automated program existed for rapid analysis of initial rates from continuous enzyme kinetic traces. Results An Interactive Continuous Enzyme Kinetics Analysis Tool (ICEKAT) was developed for semi-automated calculation of initial rates from continuous enzyme kinetic traces with particular application to the evaluation of Michaelis-Menten and EC 50 /IC 50 kinetic parameters, as well as the results of high-throughput screening assays. ICEKAT allows users to interactively fit kinetic traces using convenient browser-based selection tools, ameliorating tedious steps involved in defining ranges to fit in general purpose programs like Microsoft Excel and Graphpad Prism, while still maintaining simplicity in determining initial rates. As a test case, we quickly analyzedmore »