Abstract Soft robots with exceptional adaptability and versatility have opened new possibilities for applications in complex and dynamic environments. Thermal actuation has emerged as a promising method among various actuation strategieis, offering distinct advantages such as programmability, light weight, low actuation voltage, and untethered operation. This review provides a comprehensive overview of soft thermal actuators, focusing on their heating mechanisms, material innovations, structural designs, and emerging applications. Heat generation mechanisms including Joule heating, electromagnetic induction, and electromagnetic radiation and heat transfer mechanisms such as fluid convection are discussed. Advances in materials are grouped into two areas: heating materials, primarily based on nanomaterials, and thermally responsive materials including hydrogels, liquid crystal elastomers, and shape‐memory polymers. Structural designs, such as extension, bending, twisting, and 3D deformable configurations, are explored for enabling complex and precise movements. Applications of soft thermal actuators span environmental exploration, gripping and manipulation, biomedical devices for rehabilitation and surgery, and interactive systems for virtual/augmented reality and therapy. The review concludes with an outlook on challenges and future directions, emphasizing the need for further improvement in speed, energy efficiency, and intelligent soft robotic systems. By bridging fundamental principles with cutting‐edge applications, this review aims to inspire further advancements in the field of thermally actuated soft robotics.
more »
« less
Low-Cost, Ambient-Dried, Superhydrophobic, High Strength, Thermally Insulating, and Thermally Resilient Polybenzoxazine Aerogels
- PAR ID:
- 10129100
- Date Published:
- Journal Name:
- ACS Applied Polymer Materials
- Volume:
- 1
- Issue:
- 9
- ISSN:
- 2637-6105
- Page Range / eLocation ID:
- 2322 to 2333
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Silicone elastomers exhibit extraordinary compliance, positioning them as a material of choice for soft robots and devices. To accelerate curing times of platinum-catalyzed silicone elastomers, researchers have employed elevated temperatures; however, knowledge of the requisite duration for curing at a given temperature has remained limited to specific elastomers and has relied primarily on empirical trends. This work presents an analytical model based on an Arrhenius framework coupled with data from thermo-rheological experiments to provide guidelines for suitable curing conditions for commercially available addition-cured platinum-catalyzed silicone elastomers. The curing reaction exhibits self-similarity upon normalizing to a dimensionless reaction coordinate, allowing quantification of the extent of curing under arbitrary time-varying thermal conditions. Mechanical testing revealed no significant changes in properties or performance as a result of thermally accelerated curing. With this framework, higher throughput of elastomeric components can be achieved, and the design space for elastomer-based manufacturing can be developed beyond conventional casting.more » « less
An official website of the United States government

