Disassembly is an integral part of maintenance, upgrade, and remanufacturing operations to recover end-of-use products. Optimization of disassembly sequences and the capability of robotic technology are crucial for managing the resource-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human-robot collaboration. The proposed model combines three attributes: disassembly cost, disassembleability, and safety, to find the optimal path for dismantling a product and assigning each disassembly operation among humans and robots. The multi-attribute utility function has been employed to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly and is assumed to be an uncertain parameter with a Beta probability density function; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the safety of human workers in the work environment. The optimization model identifies the best disassembly sequence and makes tradeoffs among multi-attributes. An example of a computer desktop illustrates how the proposed model works. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations between human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot.
more »
« less
Probabilistic Disassembly
Disassembling stripped binaries is a prominent challenge for binary analysis, due to the interleaving of code segments and data, and the difficulties of resolving control transfer targets of indirect calls and jumps. As a result, most existing disassemblers have both false positives (FP) and false negatives (FN). We observe that uncertainty is inevitable in disassembly due to the information loss during compilation and code generation. Therefore, we propose to model such uncertainty using probabilities and propose a novel disassembly technique, which computes a probability for each address in the code space, indicating its likelihood of being a true positive instruction. The probability is computed from a set of features that are reachable to an address, including control flow and data flow features. Our experiments with more than two thousands binaries show that our technique does not have any FN and has only 3.7% FP. In comparison, a state-of-the-art superset disassembly technique has 85% FP. A rewriter built on our disassembly can generate binaries that are only half of the size of those by superset disassembly and run 3% faster. While many widely-used disassemblers such as IDA and BAP suffer from missing function entries, our experiment also shows that even without any function entry information, our disassembler can still achieve 0 FN and 6.8% FP.
more »
« less
- Award ID(s):
- 1850392
- NSF-PAR ID:
- 10129208
- Date Published:
- Journal Name:
- Proceedings of the 41st International Conference on Software Engineering
- Page Range / eLocation ID:
- 1187 to 1198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Yin, George (Ed.)We consider a discrete time stochastic Markovian control problem under model uncertainty. Such uncertainty not only comes from the fact that the true probability law of the underlying stochastic process is unknown, but the parametric family of probability distributions which the true law belongs to is also unknown. We propose a nonparametric adaptive robust control methodology to deal with such problem where the relevant system random noise is, for simplicity, assumed to be i.i.d. and onedimensional. Our approach hinges on the following building concepts: first, using the adaptive robust paradigm to incorporate online learning and uncertainty reduction into the robust control problem; second, learning the unknown probability law through the empirical distribution, and representing uncertainty reduction in terms of a sequence of Wasserstein balls around the empirical distribution; third, using Lagrangian duality to convert the optimization over Wasserstein balls to a scalar optimization problem, and adopting a machine learning technique to achieve efficient computation of the optimal control. We illustrate our methodology by considering a utility maximization problem. Numerical comparisons show that the nonparametric adaptive robust control approach is preferable to the traditional robust frameworksmore » « less
-
Document authors commonly use tables to support arguments presented in the text. But, because tables are usually separate from the main body text, readers must split their attention between different parts of the document. We present an interactive document reader that automatically links document text with corresponding table cells. Readers can select a sentence (or tables cells) and our reader highlights the relevant table cells (or sentences). We provide an automatic pipeline for extracting such references between sentence text and table cells for existing PDF documents that combines structural analysis of tables with natural language processing and rule-based matching. On a test corpus of 330 (sentence, table) pairs, our pipeline correctly extracts 48.8% of the references. An additional 30.5% contain only false negatives (FN) errors -- the reference is missing table cells. The remaining 20.7% contain false positives (FP) errors -- the reference includes extraneous table cells and could therefore mislead readers. A user study finds that despite such errors, our interactive document reader helps readers match sentences with corresponding table cells more accurately and quickly than a baseline document reader.more » « less
-
null (Ed.)WebAssembly (Wasm) is a platform-independent bytecode that offers both good performance and runtime isolation. To implement isolation, the compiler inserts safety checks when it compiles Wasm to native machine code. While this approach is cheap, it also requires trust in the compiler's correctness---trust that the compiler has inserted each necessary check, correctly formed, in each proper place. Unfortunately, subtle bugs in the Wasm compiler can break---and have broken---isolation guarantees. To address this problem, we propose verifying memory isolation of Wasm binaries post-compilation. We implement this approach in VeriWasm, a static offline verifier for native x86-64 binaries compiled from Wasm; we prove the verifier's soundness, and find that it can detect bugs with no false positives. Finally, we describe our deployment of VeriWasm at Fastly.more » « less
-
Abstract Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimization of disassembly sequences and the utilization of robotic technology could alleviate the labor-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human–robot collaboration. The proposed framework combines three attributes: disassembly cost, safety, and complexity of disassembly, namely disassembleability, to identify the optimal disassembly path and allocate operations between human and robot. A multi-attribute utility function is used to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly which is assumed to be an uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the protection of human workers in the work environment. An example of dismantling a desktop computer is used to show the application. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations among human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot.more » « less