skip to main content


Search for: All records

Award ID contains: 1850392

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Cybercrime scene reconstruction that aims to reconstruct a previous execution of the cyber attack delivery process is an important capability for cyber forensics (e.g., post mortem analysis of the cyber attack executions). Unfortunately, existing techniques such as log-based forensics or record-and-replay techniques are not suitable to handle complex and long-running modern applications for cybercrime scene reconstruction and post mortem forensic analysis. Specifically, log-based cyber forensics techniques often suffer from a lack of inspection capability and do not provide details of how the attack unfolded. Record-and-replay techniques impose significant runtime overhead, often require significant modifications on end-user systems, and demand to replay the entire recorded execution from the beginning. In this paper, we propose C2SR, a novel technique that can reconstruct an attack delivery chain (i.e., cybercrime scene) for post-mortem forensic analysis. It provides a highly desired capability: interactable partial execution reconstruction. In particular, it reproduces a partial execution of interest from a large execution trace of a long-running program. The reconstructed execution is also interactable, allowing forensic analysts to leverage debugging and analysis tools that did not exist on the recorded machine. The key intuition behind C2SR is partitioning an execution trace by resources and reproducing resource accesses that are consistent with the original execution. It tolerates user interactions required for inspections that do not cause inconsistent resource accesses. Our evaluation results on 26 real-world programs show that C2SR has low runtime overhead (less than 5.47%) and acceptable space overhead. We also demonstrate with four realistic attack scenarios that C2SR successfully reconstructs partial executions of long-running applications such as web browsers, and it can remarkably reduce the user’s efforts to understand the incident. 
    more » « less
  4. null (Ed.)
  5. Malware written in dynamic languages such as PHP routinely employ anti-analysis techniques such as obfuscation schemes and evasive tricks to avoid detection. On top of that, attackers use automated malware creation tools to create numerous variants with little to no manual effort. This paper presents a system called Cubismo to solve this pressing problem. It processes potentially malicious files and decloaks their obfuscations, exposing the hidden malicious code into multiple files. The resulting files can be scanned by existing malware detection tools, leading to a much higher chance of detection. Cubismo achieves improved detection by exploring all executable statements of a suspect program counterfactually to see through complicated polymorphism, metamorphism and, obfuscation techniques and expose any malware. Our evaluation on a real-world data set collected from a commercial web hosting company shows that Cubismo is highly effective in dissecting sophisticated metamorphic malware with multiple layers of obfuscation. In particular, it enables VirusTotal to detect 53 out of 56 zero-day malware samples in the wild, which were previously undetectable. 
    more » « less