Abstract Andean glaciers have melted rapidly since the 1960s. While some melting is likely due to anthropogenic climate change driven by increasing greenhouse gases, deposition of light-absorbing particles such as black carbon (BC) may also play a role. We hypothesize that BC from fires in the Amazon Basin and elsewhere may be deposited on Andean glaciers, reducing the surface albedo and inducing further melting. Here we investigate the role of BC deposition on albedo changes in the Andes for 2014–2019 by combining atmospheric chemistry modeling with observations of BC in snow or ice at four mountain sites in Peru (Quelccaya, Huascarán, Yanapaccha, and Shallap) and at one site in Bolivia (Illimani). We find that annual mean ice BC concentrations simulated by the chemical transport model GEOS-Chem for 2014–2019 are roughly consistent with those observed at the site with the longest record, Huascarán, with overestimates of 15%–40%. Smoke from fires account for 20%–70% of total wet and dry deposition fluxes, depending on the site. The rest of BC deposited comes from fossil fuel combustion. Using a snow albedo model, we find that the annual mean radiative forcing from the deposition of smoke BC alone on snow ranges from +0.1 to +3.2 W m−2under clear-sky conditions, with corresponding average albedo reductions of 0.04%–1.1%. These ranges are dependent on site and snow grain size. This result implies a potentially significant climate impact of biomass burning in the Amazon on radiative forcing in the Andes.
more »
« less
Influence of cloud microphysical processes on black carbon wet removal, global distributions, and radiative forcing
Abstract. Parameterizations that impact wet removal of black carbon (BC)remain uncertain in global climate models. In this study, we enhance thedefault wet deposition scheme for BC in the Community Earth System Model (CESM)to (a) add relevant physical processes that were not resolved in thedefault model and (b) facilitate understanding of the relative importanceof various cloud processes on BC distributions. We find that the enhancedscheme greatly improves model performance against HIPPO observationsrelative to the default scheme. We find that convection scavenging, aerosolactivation, ice nucleation, evaporation of rain or snow, and below-cloudscavenging dominate wet deposition of BC. BC conversion rates for processesrelated to in-cloud water–ice conversion (i.e., riming, the Bergeronprocess, and evaporation of cloud water sedimentation) are relativelysmaller, but have large seasonal variations. We also conduct sensitivitysimulations that turn off each cloud process one at a time to quantify theinfluence of cloud processes on BC distributions and radiative forcing.Convective scavenging is found to have the largest impact onBC concentrations at mid-altitudes over the tropics and even globally. Inaddition, BC is sensitive to all cloud processes over the NorthernHemisphere at high latitudes. As for BC vertical distributions, convectivescavenging greatly influences BC fractions at different altitudes.Suppressing BC droplet activation in clouds mainly decreases the fraction ofcolumn BC below 5 km, whereas suppressing BC ice nucleation increases thatabove 10 km. During wintertime, the Bergeron process also significantlyincreases BC concentrations at lower altitudes over the Arctic. Oursimulation yields a global BC burden of 85 Gg; corresponding directradiative forcing (DRF) of BC estimated using the Parallel Offline RadiativeTransfer (PORT) is 0.13 W m−2, much lower than previous studies. Therange of DRF derived from sensitivity simulations is large, 0.09–0.33 W m−2,corresponding to BC burdens varying from 73 to 151 Gg. Due todifferences in BC vertical distributions among each sensitivity simulation,fractional changes in DRF (relative to the baseline simulation) are alwayshigher than fractional changes in BC burdens; this occurs because relocating BCin the vertical influences the radiative forcing per BC mass. Our resultshighlight the influences of cloud microphysical processes on BC concentrationsand radiative forcing.
more »
« less
- PAR ID:
- 10129213
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 1587 to 1603
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.more » « less
-
Abstract We explore the importance of the life cycle of detrained tropical anvil clouds in producing a weak net cloud radiative effect (NCRE) by tropical convective systems. We simulate a horizontally homogeneous elevated ice cloud in a 2‐D framework using the System for Atmospheric Modeling cloud‐resolving model. The initially thick cloud produces a negative NCRE, which is later canceled by a positive NCRE as the cloud thins and rises. Turning off interactive cloud radiation reveals that cloud radiative heating and in‐cloud convection are fundamental in driving net radiative neutrality. In‐cloud convection acts to thin initially thick anvil clouds and loft and maintain thin cirrus. The maintenance of anvil clouds is tied to the recycling of water vapor and cloud ice through sublimation, nucleation, and deposition as air parcels circulate vertically within the cloud layer. Without interactive radiation, the cloud sediments and sublimates away, producing a large negative NCRE. The specification of cloud microphysics substantially influences the cloud's behavior and life cycle , but the tendency of the life cycle to produce compensating cloud radiative effects is robust to substantial changes in the microphysics. Our study shows that small‐scale processes within upper level ice clouds likely have a strong influence on the NCRE associated with tropical convective cloud systems.more » « less
-
null (Ed.)Abstract. The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO42-), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO42- burdens decrease significantly in all simulations by 10 %–60 % following the reductions of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of -0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which -0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO42- forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change.more » « less
-
Atmospheric aerosols are key contributors to cloud condensation nuclei (CCN) and ice nucleating particle (INP) formation, which can offset positive radiative forcing. Aerosol particles can undergo many cycles of droplet activation and subsequent drying before their removal from the atmosphere through dry or wet deposition. Cloud-aerosol-precipitation interactions are affected by cloud droplet or ice crystal formation, which is related to the physicochemical properties of aerosol particles. Isoprene-derived secondary organic aerosol (iSOA) is an abundant component aerosol and has been previously found in INPs and cloud water residues, and it includes both soluble and insoluble residues in its particle matrix. Currently, most of our understanding of iSOA is derived from studying the soluble residues, but there has been a measurement gap for characterizing the insoluble residues. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, a unique approach is utilized to collect the insoluble residues of SOA in ~3 μm droplets collected from a Spot Sampler from Aerosol Devices, Inc. iSOA is generated by reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid) in a humidified atmospheric chamber under dark conditions. Droplets are impacted directly on a substrate or in a liquid medium to study the roles of insoluble residues from both single-particle and bulk perspectives. A suite of microspectroscopy techniques, including Raman and optical photothermal infrared (O-PTIR) spectroscopy, are used to probe the chemical composition of the residues. Atomic force microscopy – photothermal infrared (AFM-PTIR) spectroscopy and Nanoparticle Tracking Analysis (NTA) are used to measure the size distributions of the residues. These insights may help understand the properties of residues from cloud droplet evaporation and subsequent cloud-aerosol-precipitation interactions in the atmosphere.more » « less
An official website of the United States government

