skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semi-Cyclic Stochastic Gradient Descent
We consider convex SGD updates with a block-cyclic structure, i.e., where each cycle consists of a small number of blocks, each with many samples from a possibly different, block-specific, distribution. This situation arises, e.g., in Federated Learning where the mobile devices available for updates at different times during the day have different characteristics. We show that such block-cyclic structure can significantly deteriorate the performance of SGD, but propose a simple approach that allows prediction with the same guarantees as for i.i.d., non-cyclic, sampling.  more » « less
Award ID(s):
1718970
PAR ID:
10129417
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 36th International Conference on Machine Learning, PMLR
Volume:
97
ISSN:
2640-3498
Page Range / eLocation ID:
1764-1773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banerjee, Arindam; Fukumizu, Kenji (Ed.)
    We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward. Although many algorithms have been proposed for contextual bandit, most of them rely on finding the maximum likelihood estimator at each iteration, which requires 𝑂(𝑡) time at the 𝑡-th iteration and are memory inefficient. A natural way to resolve this problem is to apply online stochastic gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant with respect to 𝑡, but a contextual bandit policy based on online SGD updates that balances exploration and exploitation has remained elusive. In this work, we show that online SGD can be applied to the generalized linear bandit problem. The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information and uses Thompson Sampling for exploration, achieves 𝑂̃ (𝑇‾‾√) regret with the total time complexity that scales linearly in 𝑇 and 𝑑, where 𝑇 is the total number of rounds and 𝑑 is the number of features. Experimental results show that SGD-TS consistently outperforms existing algorithms on both synthetic and real datasets. 
    more » « less
  2. Federated Learning (FL) has attracted increasing attention in recent years. A leading training algorithm in FL is local SGD, which updates the model parameter on each worker and averages model parameters across different workers only once in a while. Although it has fewer communication rounds than the classical parallel SGD, local SGD still has large communication overhead in each communication round for large machine learning models, such as deep neural networks. To address this issue, we propose a new communicationefficient distributed SGD method, which can significantly reduce the communication cost by the error-compensated double compression mechanism. Under the non-convex setting, our theoretical results show that our approach has better communication complexity than existing methods and enjoys the same linear speedup regarding the number of workers as the full-precision local SGD. Moreover, we propose a communication-efficient distributed SGD with momentum, which also has better communication complexity than existing methods and enjoys a linear speedup with respect to the number of workers. At last, extensive experiments are conducted to verify the performance of our proposed methods. 
    more » « less
  3. Federated Averaging (FedAvg) and its variants are the most popular optimization algorithms in federated learning (FL). Previous convergence analyses of FedAvg either assume full client participation or partial client participation where the clients can be uniformly sampled. However, in practical cross-device FL systems, only a subset of clients that satisfy local criteria such as battery status, network connectivity, and maximum participation frequency requirements (to ensure privacy) are available for training at a given time. As a result, client availability follows a natural cyclic pattern. We provide (to our knowledge) the first theoretical framework to analyze the convergence of FedAvg with cyclic client participation with several different client optimizers such as GD, SGD, and shuffled SGD. Our analysis discovers that cyclic client participation can achieve a faster asymptotic convergence rate than vanilla FedAvg with uniform client participation under suitable conditions, providing valuable insights into the design of client sampling protocols. 
    more » « less
  4. null (Ed.)
    In this paper, we study communication-efficient decentralized training of large-scale machine learning models over a network. We propose and analyze SQuARM-SGD, a decentralized training algorithm, employing momentum and compressed communication between nodes regulated by a locally computable triggering rule. In SQuARM-SGD, each node performs a fixed number of local SGD (stochastic gradient descent) steps using Nesterov's momentum and then sends sparisified and quantized updates to its neighbors only when there is a significant change in its model parameters since the last time communication occurred. We provide convergence guarantees of our algorithm for strongly-convex and non-convex smooth objectives. We believe that ours is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that SQuARM-SGD converges at rate O(1/nT) for strongly-convex objectives, while for non-convex objectives it converges at rate O(1/√nT), thus matching the convergence rate of \emphvanilla distributed SGD in both these settings. We corroborate our theoretical understanding with experiments and compare the performance of our algorithm with the state-of-the-art, showing that without sacrificing much on the accuracy, SQuARM-SGD converges at a similar rate while saving significantly in total communicated bits. 
    more » « less
  5. Communication-efficient SGD algorithms, which allow nodes to perform local updates and periodically synchronize local models, are highly effective in improving the speed and scalability of distributed SGD. However, a rigorous convergence analysis and comparative study of different communication-reduction strategies remains a largely open problem. This paper presents a unified framework called Cooperative SGD that subsumes existing communication-efficient SGD algorithms such as periodic-averaging, elastic-averaging, and decentralized SGD. By analyzing Cooperative SGD, we provide novel convergence guarantees for existing algorithms. Moreover, this framework enables us to design new communication-efficient SGD algorithms that strike the best balance between reducing communication overhead and achieving fast error convergence with a low error floor. 
    more » « less