skip to main content


Title: Effects of bentonite on physical, mechanical and barrier properties of cellulose nanofibril hybrid films for packaging applications.
There is an increasing attention to cellulose nanofibrils (CNFs) for food packaging applications due to their abundance, biodegradability, and low gas permeability. In this work, oxygen and water barrier performance is studied for bio-nanocomposite films formed by incorporation of two types of bentonite (PGN and PGV) at different loads (15, 30 and 45 wt%) into continuous CNF matrix. The resulting hybrid films were analyzed for their morphology, surface energy, mechanical strengths as well as water/oxygen barrier qualities. Both types of bentonite lowered the CNF degradation temperature and strength to some degree for reasons not so clear but perhaps due to partial disruption of the CNF H-bond network. It was revealed from microscopic study that clay particles form a layer within cellulose chains, resulting in alteration of composite structure. The contact angle analysis by polar and nonpolar liquids, suggested the PGN-containing samples were more hydrophilic; clay induced polar functionalities to the composite. While 15% PGN load reduced the water vapor transmission rate from 425 to 375 g/ m2 day, higher proportions of bentonite negatively affected this trend. Also, analysis of oxygen transmission rate showed the PGN effectively restricted the oxygen passage in dry state and to a lower extent at higher relative humidity. In WVTR analysis, PGN showed a superior performance over PGV attributable to its crystalline structure as evident in XRD patterns. The proposed hybrid CNF-BNT films in this study can present an eco-friendly alternative in packaging materials, especially where penetration of water vapor and oxygen is to be avoided.  more » « less
Award ID(s):
1757529
PAR ID:
10129423
Author(s) / Creator(s):
Date Published:
Journal Name:
Cellulose
Volume:
26
Issue:
9
ISSN:
0969-0239
Page Range / eLocation ID:
5363-5379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The inferior water vapor permeability and water resistance properties are the major challenges that hindered the development of chitosan‐CNF composites for packaging applications. In this study, the chitosan‐CNF composite films were prepared with in situ crosslinking of citric acid (CA) to reduce the percent water uptake (WU) and water vapor permeability (WVP). The composite films were produced by the solvent casting method with 10%, 15%, and 20% CNF as a reinforcement, 20%, 25%, and 30% CA as a crosslinker, and 20% glycerol as a plasticizer. The Fourier transform infrared (FTIR) spectra of composite films with a peak at 1710 cm−1confirmed the effective crosslinking of citric acid on the chitosan‐CNF matrix. The crosslinked composite films exhibited the lowest WU of 39% and WVP of 9.99 × 10−7g/Pa s m2with reduced light transmittance due to CNF reinforcement. The scanning electron microscopy (SEM) study showed the smooth surface morphology of composite films. The CA crosslinking slightly decreased the tensile strength of composite films. However, the composite film with optimal CNF and CA concentration (25% and 20%, respectively) exhibited comparable tensile strength with other synthetic and biopolymer composites and can be used as a potential biopolymer composite for packaging applications.

     
    more » « less
  2. Biofuels produced via thermochemical conversions of waste biomass could be sustainable alternatives to fossil fuels but currently require costly downstream upgrading to be used in existing infrastructure. In this work, we explore how a low-cost, abundant clay mineral, bentonite, could serve as an in situ heterogeneous catalyst for two different thermochemical conversion processes: pyrolysis and hydrothermal carbonization (HTC). Avocado pits were combined with 20 wt% bentonite clay and were pyrolyzed at 600 °C and hydrothermally carbonized at 250 °C, commonly used conditions across the literature. During pyrolysis, bentonite clay promoted Diels–Alder reactions that transformed furans to aromatic compounds, which decreased the bio-oil oxygen content and produced a fuel closer to being suitable for existing infrastructure. The HTC bio-oil without the clay catalyst contained 100% furans, mainly 5-methylfurfural, but in the presence of the clay, approximately 25% of the bio-oil was transformed to 2-methyl-2-cyclopentenone, thereby adding two hydrogen atoms and removing one oxygen. The use of clay in both processes decreased the relative oxygen content of the bio-oils. Proximate analysis of the resulting chars showed an increase in fixed carbon (FC) and a decrease in volatile matter (VM) with clay inclusion. By containing more FC, the HTC-derived char may be more stable than pyrolysis-derived char for environmental applications. The addition of bentonite clay to both processes did not produce significantly different bio-oil yields, such that by adding a clay catalyst, a more valuable bio-oil was produced without reducing the amount of bio-oil recovered. 
    more » « less
  3. Abstract

    Foam materials are widely used in packaging and buildings for thermal insulation, sound absorption, shock absorption, and other functions. They are dominated by petroleum‐based plastics, most of which, however, are not biodegradable nor fire‐proofing, leading to severe plastic pollution and safety concerns. Here, a fire‐proofing, thermally insulating, recyclable 3D graphite‐cellulose nanofiber (G‐CNF) foam fabricated from resource‐abundant graphite and cellulose is reported. A freeze‐drying‐free and scalable ionic crosslinking method is developed to fabricate Cu2+ionic crosslinked G‐CNF (Cu‐G‐CNF) foam with a low energy consumption and cost. Moreover, the direct foam formation strategy enables local foam manufacturing to fulfil the local demand. The ionic crosslinked G‐CNF foam demonstrates excellent water stability (the foam can maintain mechanical robustness even in wet state and recover after being dried in air without deformation), fire resistance (41.7 kW m−2vs 214.3 kW m−2in the peak value of heat release rate) and a low thermal conductivity (0.05 W/(mK)), without compromising the recyclability, degradability, and mechanical performance of the composite foam. The demonstrated 3D G‐CNF foam can potentially replace the commercial plastic‐based foam materials, representing a sustainable solution against the “white pollution”.

     
    more » « less
  4. This study critically appraises employing chitosan as a composite with bentonite, biochar, or both materials as an alternative to conventional barrier materials. A comprehensive literature review was conducted to identify the studies reporting chitosan-bentonite composite (CBC), chitosan amended biochar (CAB), and chitosan-bentonite-biochar composite (CBBC) for effective removal of various contaminants. The study aims to review the synthesis of these composites, identify fundamental properties affecting their adsorption capacities, and examine how these properties affect or enhance the removal abilities of other materials within the composite. Notably, CBC composites have the advantage of adsorbing both cationic and anionic species, such as heavy metals and dyes, due to the cationic nature of chitosan and the anionic nature of montmorillonite, along with the increased accessible surface area due to the clay. CAB composites have the unique advantage of being low-cost sorbents with high specific surface area, affinity for a wide range of contaminants owing to the high surface area and microporosity of biochar, and abundant available functional groups from the chitosan. Limited studies have reported the utilization of CBBC composites to remove various contaminants. These composites can be prepared by combining the steps employed in preparing CBC and CAB composites. They can benefit from the favorable adsorption properties of all three materials while also satisfying the mechanical requirements of a barrier material. This study serves as a knowledge base for future research to develop novel composite barrier materials by incorporating chitosan and biochar as amendments to bentonite. 
    more » « less
  5. Abstract

    Cellulose nanomaterial (CNM) and polyethylenimine (PEI) composites have attracted growing attention due to their multifunctional characteristics, which have been applied in different fields. In this work, soybean hulls were valorized into carboxyl cellulose nanofibrils (COOH-CNFs), and composited into hydrogels with PEI by combining them with cationic chelating and physical adsorption strategies. Cellulose nanofibrils (CNFs) were produced from soybean hulls prior to oxidation by a TEMPO mediated reaction to obtain COOH–CNFs; then drops of zinc chloride were added to 1.5% aqueous COOH–CNF dispersions, which were left for 24 h to form COOH-CNF hydrogels. Finally, the hydrogels were functionalized using different concentration of PEI solutions over a range of pH values. Elemental analysis results showed that 20% aq. PEI at pH 11.6 is the optimum condition to synthesize the COOH–CNF/PEI hydrogels. Additionally, the adsorption efficiency for the removal of anionic methyl blue dyes and Cu(II) ions from water was tested, reaching 82.6% and 69.8%, respectively, after 24 h. These results demonstrate the great potential of COOH–CNF/PEI hydrogels as adsorbent materials for water remediation.

    Graphical abstract

     
    more » « less