skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1757529

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hybrid nanocellulose-based foams are a desirable class of low-density and porous materials for their potential in many applications. This study aims at characterizing and understanding the structure-properties relationship of four foam formulations prepared from combinations of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and kaolin-microfibrillated cellulose composite. All the foams were crosslinked with a polyamide-epichlorohydrin crosslinker (Polycup) to impart stability under wet conditions without additional functionalization. Foams containing 25 wt% kaolin exhibited excellent shape recovery promoted by a higher load of crosslinker (5 wt%), and superior compressive properties. The addition of CNC at 33.3 wt% and 50 wt% did not seem to enhance the properties of the foam and also reduced the specific surface area. A preliminary comparative study between the four tested formulations was conducted to assess the feasibility of the foam as an adsorbent of methylene blue dye. 
    more » « less
  2. : Hongjun Lin and Meijia Zhang (Ed.)
    New methods of oil-water separation are needed as industrialization has increased the prevalence of oil-water mixtures on Earth. As an abundant and renewable resource with high oxygen and grease barrier properties, mechanically refined cellulose nanofibrils (CNFs) may have promising applications for oil-water separations. The unbleached form of these nanofibrils, lignin-containing CNFs (LCNFs), have also been found to display extraordinary barrier properties and are more environmentally friendly and cost-effective than CNFs. Herein, both wet and dry LCNF-modified filter papers have been developed by coating commercial filter paper with an LCNF suspension utilizing vacuum filtration. The LCNF-modified filters were tested for effectiveness in separating oil-water emulsions, and a positive relationship was discovered between a filter’s LCNF coat weight and its oil collection capabilities. The filtration time was also analyzed for various coat weights, revealing a trend of high flux for low LCNF coat weights giving-way-to predictions of a coat weight upper limit. Additionally, it was found that wet filters tend to have higher flux values and oil separation efficiency values than dry filters of the same LCNF coat weight. Results confirm that the addition of LCNF to commercial filter papers has the potential to be used in oil-water separation. 
    more » « less
  3. Cellulose nanomaterials are produced employing a multitude of methodologies including electrospinning, bacterial generation, acid digestion, and a variety of mechanical defibrillation techniques; the morphology of the nanomaterial produced is specific to the production process. Feedstocks range from various forms of woody biomass, to fungi, and have a great impact on the resulting product. The mechanical defibrillation technique, such as that employed in the present work, continuously breaks down cellulose fibers suspended in water via segmentation and defibrillation through grinding and refining. The process is typically operated until a desired level of fines is achieved in the resultant slurry of cellulose nanofiber (CNF), alternatively known as cellulose nanofibril. Mechanical defibrillation processes can be built to produce several liters in a small batch system or up to tons per day in a continuous pilot scale refiner system. In the present work a continuous system was developed with the capacity to produce 14 L of cellulose nanofiber slurry with consistent specifications and in a manner compliant with GMP/GLP protocols in order to be amenable to biomedical applications. The system was constructed within an ISO class 7 cleanroom and refining was performed on bleached softwood pulp suspension in purified water. This manuscript details the continuous grinding system, the processes employed to produce cellulose nanofiber, and characterizes the resultant cellulose nanofiber slurry and sheets formed from the slurry. 
    more » « less
  4. Abstract Background Peripheral nerve injury can cause significant impairment, and the current methods for facilitating repair, particularly over distances greater than approximately 1 mm, are not entirely effective. Allografts, autografts, and synthetic conduits are three of the most common surgical interventions for peripheral nerve repair; however, each has limitations including poor biocompatibility, adverse immune responses, and the need for successive surgeries. A potential new method for promoting peripheral nerve repair that addresses the shortcomings of current interventions is a biocompatible cellulose nanofibril (CNF) conduit that degrades in-vivo over time. Preliminary testing in multiple animal models has yielded positive results, but more information is needed regarding how the CNF conduit facilitates nutrient and gas flow. Results The current work employs 3D modelling and analysis via COMSOL Multiphysics® to determine how the CNF conduit facilitates oxygen movement both radially through the conduit walls and axially along the length of the conduit. Various CNF wall permeabilities, conduit lengths, and nerve-to-conduit diameter ratios have been examined; all of which were shown to have an impact on the resultant oxygen profile within the conduit. When the walls of the CNF conduit were modeled to have significant oxygen permeability, oxygen diffusion across the conduit was shown to dominate relative to axial diffusion of oxygen along the length of the conduit, which was otherwise the controlling diffusion mechanism. Conclusions The results of this study suggest that there is a complex relationship between axial and radial diffusion as the properties of the conduit such as length, diameter, and permeability are altered and when investigating various locations within the model. At low wall permeabilities the axial diffusion is dominant for all configurations, while for higher wall permeabilities the radial diffusion became dominant for smaller diameters. The length of the conduit did not alter the mechanism of diffusion, but rather had an inverse relationship with the magnitude of the overall concentration profile. As such the modeling results may be employed to predict and control the amount and distribution of oxygenation throughout the conduit, and hence to guide experimental conduit design. 
    more » « less
  5. Cellulose nanofibrils (CNFs) produced through processes involving oxidation (e.g. TEMPO oxidation) present reactive groups that allow for straightforward modification in aqueous suspension. CNFs fabricated through mechanical refinement alone can be challenging to modify for subsequent reactions due to only having hydroxyl groups present on the surface. To address these issues, CNFs with only hydroxyl groups present were functionalized with norbornene groups in their native aqueous suspension to achieve up to 10% functionalization per anhydroglucose unit. Since quantification of surface functionalizationof CNFs is challenging through most methods, a degradation and subsequent nuclear magnetic resonance analysis method was developed to quantify norbornene functionalization. The norbornene functionalized CNFs (nCNFs) were crosslinked through UV and thermally initiated thiol-eneclick reactions to create robust CNF hydrogels. By varying the reaction conditions, hydrogels made from nCNFs and a dithiol cross-linker could achieve compression modulus values up to 25 kPa. The materials were stable in aqueous suspensions and the cross-linked hydrogels still exhibited shear thinning behavior with high recovery, which demonstrated that even though effective cross-links were formed, a complete network was not. Through this study, thiolnorbornene crosslinking of CNFs could create robust hydrogels and improve aqueous stability that could have applications in sustainable materials and biomaterials. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Participation in RET programs can provide a rich experience by teaching key principles and ideas concerning the nature of science while also bolstering knowledge content by providing teachers with a deeper understanding and appreciation of commonly taught concepts . 
    more » « less