skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PipeDream: generalized pipeline parallelism for DNN training
DNN training is extremely time-consuming, necessitating efficient multi-accelerator parallelization. Current approaches to parallelizing training primarily use intra-batch parallelization, where a single iteration of training is split over the available workers, but suffer from diminishing returns at higher worker counts. We present PipeDream, a system that adds inter-batch pipelining to intra-batch parallelism to further improve parallel training throughput, helping to better overlap computation with communication and reduce the amount of communication when possible. Unlike traditional pipelining, DNN training is bi-directional, where a forward pass through the computation graph is followed by a backward pass that uses state and intermediate data computed during the forward pass. Naïve pipelining can thus result in mismatches in state versions used in the forward and backward passes, or excessive pipeline flushes and lower hardware efficiency. To address these challenges, PipeDream versions model parameters for numerically correct gradient computations, and schedules forward and backward passes of different minibatches concurrently on different workers with minimal pipeline stalls. PipeDream also automatically partitions DNN layers among workers to balance work and minimize communication. Extensive experimentation with a range of DNN tasks, models, and hardware configurations shows that PipeDream trains models to high accuracy up to 5.3X faster than commonly used intra-batch parallelism techniques.  more » « less
Award ID(s):
1651570 1725663
PAR ID:
10129641
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
SOSP
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural network (DNN) accelerators as an example of domain-specific architecture have demonstrated great success in DNN inference. However, the architecture acceleration for equally important DNN training has not yet been fully studied. With data forward, error backward and gradient calculation, DNN training is a more complicated process with higher computation and communication intensity. Because the recent research demonstrates a diminishing specialization return, namely, “accelerator wall”, we believe that a promising approach is to explore coarse-grained parallelism among multiple performance-bounded accelerators to support DNN training. Distributing computations on multiple heterogeneous accelerators to achieve high throughput and balanced execution, however, remaining challenging. We present ACCPAR, a principled and systematic method of determining the tensor partition among heterogeneous accelerator arrays. Compared to prior empirical or unsystematic methods, ACCPAR considers the complete tensor partition space and can reveal previously unknown new parallelism configurations. ACCPAR optimizes the performance based on a cost model that takes into account both computation and communication costs of a heterogeneous execution environment. Hence, our method can avoid the drawbacks of existing approaches that use communication as a proxy of the performance. The enhanced flexibility of tensor partitioning in ACCPAR allows the flexible ratio of computations to be distributed among accelerators with different performances. The proposed search algorithm is also applicable to the emerging multi-path patterns in modern DNNs such as ResNet. We simulate ACCPAR on a heterogeneous accelerator array composed of both TPU-v2 and TPU-v3 accelerators for the training of large-scale DNN models such as Alexnet, Vgg series and Resnet series. The average performance improvements of the state-of-the-art “one weird trick” (OWT) and HYPAR, and ACCPAR, normalized to the baseline data parallelism scheme where each accelerator replicates the model and processes different input data in parallel, are 2.98×, 3.78×, and 6.30×, respectively. 
    more » « less
  2. The growing computational demands of deep learning have driven interest in analog neural networks using resistive memory and silicon photonics. However, these technologies face inherent limitations in computing parallelism when used independently. Photonic phase-change memory (PCM), which integrates photonics with PCM, overcomes these constraints by enabling simultaneous processing of multiple inputs encoded on different wavelengths, significantly enhancing parallel computation for deep neural network (DNN) inference and training. This paper presents MERIT, a sustainable DNN accelerator that capitalizes on the non-volatility of resistive memory and the high operating speed of photonic devices. MERIT enables seamless inference and training by loading weight kernels into photonic PCM arrays and selectively supplying light encoded with input features for the forward pass and loss gradients for the backward pass. We compare MERIT with state-of-the-art digital and analog DNN accelerators including TPU, DEAP, and PTC. Simulation results demonstrate that MERIT reduces execution time by 68% and energy consumption by 64% for inference, and reduces execution time by 79% and energy consumption by 84% for training. 
    more » « less
  3. Accepted and published in the Proceedings of the 2025 USENIX Annual Technical Conference (USENIX ATC ’25). Deep neural network (DNN) training continues to scale rapidly in terms of model size, data volume, and sequence length, to the point where multiple machines are required to fit large models for training. Different distributed and parallel training strategies have been developed to support large-scale DNN training by partitioning the training state across GPUs. However, existing DNN training systems provide very limited support for reconfiguring parallelism strategies in the middle of the training via checkpointing. This limitation arises because distributed checkpoints are tightly coupled to specific model parallelism and hardware configurations, preventing large-scale training jobs from efficiently adapting to hardware failures or resource elasticity. This paper presents Universal Checkpointing (UCP), a novel checkpointing system that enables flexible and efficient DNN training with reconfigurable parallelism. UCP overcomes challenges in existing systems by decoupling checkpoint structure from parallel training strategies and hardware configurations. In addition, we present a pattern-based reconfiguration pipeline that enables automatic, flexible, and efficient mapping of checkpoint state to various parallelism strategies. Evaluation on a range of DNN models, including state-of-the-art dense and sparse LLMs, shows that UCP enables reconfiguration for a broader set of widely used parallelism strategies than existing solutions while adding negligible reconfiguration cost. UCP has been successfully employed in real LLM training workloads, greatly enhancing their flexibility and resilience to dynamic hardware environments. 
    more » « less
  4. Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new environments, domains, or users. In order to realize such domain adaption or personalization, the models on devices need to be continuously trained on the device. In this work, we design EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different memory access patterns among forward and backward propagation and weight update. Therefore, we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model is established to automatically schedule computation and memory resources to achieve high energy efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively. 
    more » « less
  5. In this paper, we consider hybrid parallelism—a paradigm that em- ploys both Data Parallelism (DP) and Model Parallelism (MP)—to scale distributed training of large recommendation models. We propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training. DCT filters the entities to be communicated across the network through a simple hard-thresholding function, allowing only the most relevant information to pass through. For communication efficient DP, DCT compresses the parameter gradients sent to the parameter server during model synchronization. The threshold is updated only once every few thousand iterations to reduce the computational overhead of compression. For communication efficient MP, DCT incorporates a novel technique to compress the activations and gradients sent across the network during the forward and backward propagation, respectively. This is done by identifying and updating only the most relevant neurons of the neural network for each training sample in the data. We evaluate DCT on publicly available natural language processing and recommender models and datasets, as well as recommendation systems used in production at Facebook. DCT reduces communication by at least 100× and 20× during DP and MP, respectively. The algorithm has been deployed in production, and it improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance. 
    more » « less