skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward a Common Object Model for Integrated Transportation and Land Use Models
Evaluating the effects of a change to one aspect of the modern urban environment requires knowledge about other parts and how they are interconnected. Thus, integrated simulations of many parts of the entire urban ecosystem are needed to create and evaluate the effects of policies. Many existing models target a single urban system - land use models, transportation models, water system models, etc. - however coupling them to create interconnected systems often requires great effort and resources. In this work we propose a common object model for integrated transportation and land use models (ITLUMs) using the High Level Architecture Standard (IEEE 1516) (IEEE 2010). This object model is the first step in a longer term effort to develop new simulation models that can be readily integrated through common data abstractions. Finally, the proposed object model is designed to be extendable to capture the elements from other models of the urban environment.  more » « less
Award ID(s):
1745580
PAR ID:
10129944
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Simulation Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus. 
    more » « less
  2. With the advancing development of Advanced Air Mobility (AAM), there is a collaborative effort to increase safety in the airspace. AAM is an advancing field of aviation that aims to contribute to the safe transportation of goods and people using aerial vehicles. When aerial vehicles are operating in high-density locations such as urban areas, it can become crucial to incorporate collision avoidance systems. Currently, there are available pilot advisory systems such as Traffic Collision and Avoidance Systems (TCAS) providing assistance to manned aircraft, although there are currently no collision avoidance systems for autonomous flights. Standards Organizations such as the Institute of Electrical and Electronics Engineers (IEEE), Radio Technical Commission for Aeronautics (RTCA), and General Aviation Manufacturers Association (GAMA) are working to develop cooperative autonomous flights using UAS-to-UAS Communication in structured and unstructured airspaces. This paper presents a new approach for collision avoidance strategies within structured airspace known as “digital traffic lights”. The digital traffic lights are deployed over an area of land, controlling all UAVs that enter a potential collision zone and providing specific directions to mitigate a collision in the airspace. This strategy is proven through the results demonstrated through simulation in a Cesium Environment. With the deployment of the system, collision avoidance can be achieved for autonomous flights in all airspaces. 
    more » « less
  3. Abstract Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of urban carbon emissions in the United States in 2021. Addressing this challenge requires a comprehensive and data-driven approach to transform transportation systems into sustainable networks. This paper presents an integrated framework that leverages artificial intelligence (AI), machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban mobility. The framework consists of four key components: AI-powered analysis and models, synthetic urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy interventions. By combining these elements, the framework not only deciphers complex mobility patterns but also quantifies their environmental impacts, providing actionable insights for policy decisions aimed at reducing carbon emissions and promoting sustainable urban transportation. The implications of this approach extend beyond individual cities, offering a blueprint for global sustainable urban mobility. 
    more » « less
  4. Strategic Long-Range Transportation Planning (SLRTP) is pivotal in shaping prosperous, sustainable, and resilient urban futures. Existing SLRTP decision support tools predominantly serve forecasting and evaluative functions, leaving a gap in directly recommending optimal planning decisions. To bridge this gap, we propose an Interpretable State-Space Model (ISSM) that considers the dynamic interactions between transportation infrastructure and the broader urban system. The ISSM directly facilitates the development of optimal controllers and reinforcement learning (RL) agents for optimizing infrastructure investments and urban policies while still allowing human-user comprehension. We carefully examine the mathematical properties of our ISSM; specifically, we present the conditions under which our proposed ISSM is Markovian, and a unique and stable solution exists. Then, we apply an ISSM instance to a case study of the San Diego region of California, where a partially observable ISSM represents the urban environment. We also propose and train a Deep RL agent using the ISSM instance representing San Diego. The results show that the proposed ISSM approach, along with the well-trained RL agent, captures the impacts of coordinating the timing of infrastructure investments, environmental impact fees for new land development, and congestion pricing fees. The results also show that the proposed approach facilitates the development of prescriptive capabilities in SLRTP to foster economic growth and limit induced vehicle travel. We view the proposed ISSM approach as a substantial contribution that supports the use of artificial intelligence in urban planning, a domain where planning agencies need rigorous, transparent, and explainable models to justify their actions. 
    more » « less
  5. Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments. 
    more » « less