skip to main content


Title: Low acetylcholine during early sleep is important for motor memory consolidation
Abstract

The synaptic homeostasis theory of sleep proposes that low neurotransmitter activity in sleep optimizes memory consolidation. We tested this theory by asking whether increasing acetylcholine levels during early sleep would weaken motor memory consolidation. We trained separate groups of adult mice on the rotarod walking task and the single pellet reaching task, and after training, administered physostigmine, an acetylcholinesterase inhibitor, to increase cholinergic tone in subsequent sleep. Post-sleep testing showed that physostigmine impaired motor skill acquisition of both tasks. Home-cage video monitoring and electrophysiology revealed that physostigmine disrupted sleep structure, delayed non-rapid-eye-movement sleep onset, and reduced slow-wave power in the hippocampus and cortex. Additional experiments showed that: (1) the impaired performance associated with physostigmine was not due to its effects on sleep structure, as 1 h of sleep deprivation after training did not impair rotarod performance, (2) a reduction in cholinergic tone by inactivation of cholinergic neurons during early sleep did not affect rotarod performance, and (3) stimulating or blocking muscarinic and nicotinic acetylcholine receptors did not impair rotarod performance. Taken together, the experiments suggest that the increased slow wave activity and inactivation of both muscarinic and nicotinic receptors during early sleep due to reduced acetylcholine contribute to motor memory consolidation.

 
more » « less
NSF-PAR ID:
10130186
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Sleep
ISSN:
0161-8105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Open science badges

    This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found athttps://cos.io/our-services/open-science-badges/

     
    more » « less
  2. Abstract Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication. 
    more » « less
  3. Abstract

    Hippocampal sharp‐wave ripples (SWRs) support the reactivation of memory representations, relaying information to neocortex during “offline” and sleep‐dependent memory consolidation. While blockade of NMDA receptors (NMDAR) is known to affect both learning and subsequent consolidation, the specific contributions of NMDAR activation to SWR‐associated activity remain unclear. Here, we combine biophysical modeling with in vivo local field potential (LFP) and unit recording to quantify changes in SWR dynamics following inactivation of NMDAR. In a biophysical model of CA3‐CA1 SWR activity, we find that NMDAR removal leads to reduced SWR density, but spares SWR properties such as duration, cell recruitment and ripple frequency. These predictions are confirmed by experiments in which NMDAR‐mediated transmission in rats was inhibited using three different NMDAR antagonists, while recording dorsal CA1 LFP. In the model, loss of NMDAR‐mediated conductances also induced a reduction in the proportion of cell pairs that co‐activate significantly above chance across multiple events. Again, this prediction is corroborated by dorsal CA1 single‐unit recordings, where the NMDAR blocker ketamine disrupted correlated spiking during SWR. Our results are consistent with a framework in which NMDA receptors both promote activation of SWR events and organize SWR‐associated spiking content. This suggests that, while SWR are short‐lived events emerging in fast excitatory‐inhibitory networks, slower network components including NMDAR‐mediated currents contribute to ripple density and promote consistency in the spiking content across ripples, underpinning mechanisms for fine‐tuning of memory consolidation processes.

     
    more » « less
  4. Abstract Objective

    Slow‐wave activity (SWA) during sleep is reduced in people with amnestic mild cognitive impairment (aMCI) and is related to sleep‐dependent memory consolidation. Acoustic stimulation of slow oscillations has proven effective in enhancingSWAand memory in younger and older adults. In this study we aimed to determine whether acoustic stimulation during sleep boostsSWAand improves memory performance in people withaMCI.

    Methods

    Nine adults withaMCI(72 ± 8.7 years) completed one night of acoustic stimulation (stim) and one night of sham stimulation (sham) in a blinded, randomized crossover study. Acoustic stimuli were delivered phase‐locked to the upstate of the endogenous sleep slow‐waves. Participants completed a declarative recall task with 44 word‐pairs before and after sleep.

    Results

    During intervals of acoustic stimulation,SWAincreased by >10% over sham intervals (P < 0.01), but memory recall increased in only five of the nine patients. The increase inSWAwith stimulation was associated with improved morning word recall (r = 0.78,P = 0.012).

    Interpretation

    Acoustic stimulation delivered during slow‐wave sleep over one night was effective for enhancingSWAin individuals withaMCI. Given established relationships betweenSWAand memory, a larger or more prolonged enhancement may be needed to consistently improve memory inaMCI.

     
    more » « less
  5. Abstract

    Brain rhythms of sleep reflect neuronal activity underlying sleep‐associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed‐loop acoustic stimulation in humans targeted to the SO Up‐state successfully enhanced the slow oscillation rhythm and phase‐dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation‐induced hippocampo‐thalamo‐cortical activity and retention performance on a hippocampus‐dependent object‐place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3‐h retention interval at the beginning of the light phase closed‐loop stimulation failed to improve retention significantly over sham. However, retention during SO Up‐state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second‐long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo‐cortical spindle activity. Importantly, dynamics of SO‐coupled hippocampal ripple activity distinguished SOUp‐state stimulation. Non‐rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed‐loop acoustic stimulation in mice to investigate the inter‐regional mechanisms underlying memory consolidation.

     
    more » « less