skip to main content

Title: Identical or fraternal twins? The chemical homogeneity of wide binaries from Gaia DR2

One of the high-level goals of Galactic archaeology is chemical tagging of stars across the Milky Way to piece together its assembly history. For this to work, stars born together must be uniquely chemically homogeneous. Wide binary systems are an important laboratory to test this underlying assumption. Here, we present the detailed chemical abundance patterns of 50 stars across 25 wide binary systems comprised of main-sequence stars of similar spectral type identified in Gaia DR2 with the aim of quantifying their level of chemical homogeneity. Using high-resolution spectra obtained with McDonald Observatory, we derive stellar atmospheric parameters and precise detailed chemical abundances for light/odd-Z (Li, C, Na, Al, Sc, V, Cu), α (Mg, Si, Ca), Fe-peak (Ti, Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements. Results indicate that 80 per cent (20 pairs) of the systems are homogeneous in [Fe/H] at levels below 0.02 dex. These systems are also chemically homogeneous in all elemental abundances studied, with offsets and dispersions consistent with measurement uncertainties. We also find that wide binary systems are far more chemically homogeneous than random pairings of field stars of similar spectral type. These results indicate that wide binary systems tend to be chemically homogeneous but in some cases they can differ in their detailed elemental abundances at a level of [X/H] ∼ 0.10 dex, overall implying chemical tagging in broad strokes can work.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 1164-1179
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($t_{\rm lookback} \le 9.4 \, \rm {Gyr}$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $1 \, \rm {kpc}$ of the disc mid-plane is vertically homogeneous to $\lesssim 0.008 \, \rm {dex}$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 1 ($t_{\rm lookback} = 7.8 \, \rm {Gyr}$) to $\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $0.14 \, \rm {dex}$ at z = 1, reducing to $0.05 \, \rm {dex}$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$). Furthermore, elemental abundances are measurably homogeneous (to ≲0.05 dex) across a radial range of $\Delta R \approx 3.5 \, \rm {kpc}$ at z ≳ 1 and $\Delta R \approx 1.7 \, \rm {kpc}$ at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW. 
    more » « less

    We present detailed chemical compositions of four stars on the first-ascent red giant branch that are classified as chemically peculiar, but lack comprehensive analyses at high spectral resolution. For BD+03°2688, HE 0457−1805, HE 1255−2324, and HE 2207−1746, we derived metallicities [Fe/H] = −1.21, −0.19, −0.31, and −0.55, respectively, indicating a range in Galactic population membership. In addition to atmospheric parameters, we extracted elemental abundances for 28 elements, including the evolutionary-sensitive CNO group and 12C/13C ratios. Novel results are also presented for the heavy elements tungsten and thallium. All four stars have very large enhancements of neutron-capture elements, with high [La/Eu] ratios indicating enrichments from the slow neutron capture (s-process). To interpret these abundances, all indicative of [s/Fe] >1.0, we compared our results with data from literature, as well as with predictions from the Monash and fruity s-process nucleosynthesis models. BD+03°2688, HE 1255−2324, and HE 2207−1746 show C/O >1, while HE 0457−1805 has C/O <1. Since HE 0457−1805 and HE 1255−2324 are binary stars, their peculiarities are attributable to mass transfer. We identified HE 0457−1805 as a new barium giant star, and HE 1255−2324 as a new CH star, in fact a higher metallicity analogue CEMP-r/s star; the single object reported in literature so far with similar characteristics is the barium star HD 100503 ([Fe/H] = −0.72). A systematic monitoring is needed to confirm the binary nature of BD+03°2688 and HE 2207−1746, which are probably CH stars.

    more » « less

    We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $\approx 7 \, \rm {Gyr}$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $\gtrsim 12 \, \rm {Gyr}$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $\lesssim 0.17 \, \rm {dex}$ at $t_{\rm lb} = 11.6 \, \rm {Gyr}$ to $\sim 0.04 \, \rm {dex}$ at present-day. Consequently, stars at $t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in a vertically homogeneous disc, Δ[Fe/H]$\le 0.02 \, \rm {dex}$ within $1 \, \rm {kpc}$ of the galactic mid-plane, with the exception of the young stars in the inner $\approx 4 \, \rm {kpc}$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses.

    more » « less
  4. Abstract Observations of the Milky Way’s low- α disk show that several element abundances correlate with age at fixed metallicity, with unique slopes and small scatters around the age–[X/Fe] relations. In this study, we turn to simulations to explore the age–[X/Fe] relations for the elements C, N, O, Mg, Si, S, and Ca that are traced in a FIRE-2 cosmological zoom-in simulation of a Milky Way–like galaxy, m12i, and understand what physical conditions give rise to the observed age–[X/Fe] trends. We first explore the distributions of mono-age populations in their birth and current locations, [Fe/H], and [X/Fe], and find evidence for inside-out radial growth for stars with ages <7 Gyr. We then examine the age–[X/Fe] relations across m12i’s disk and find that the direction of the trends agrees with observations, apart from C, O, and Ca, with remarkably small intrinsic scatters, σ int (0.01 − 0.04 dex). This σ int measured in the simulations is also metallicity dependent, with σ int ≈ 0.025 dex at [Fe/H] = −0.25 dex versus σ int ≈ 0.015 dex at [Fe/H] = 0 dex, and a similar metallicity dependence is seen in the GALAH survey for the elements in common. Additionally, we find that σ int is higher in the inner galaxy, where stars are older and formed in less chemically homogeneous environments. The age–[X/Fe] relations and the small scatter around them indicate that simulations capture similar chemical enrichment variance as observed in the Milky Way, arising from stars sharing similar element abundances at a given birth place and time. 
    more » « less
  5. ABSTRACT The characteristics of the stellar populations in the Galactic bulge inform and constrain the Milky Way’s formation and evolution. The metal-poor population is particularly important in light of cosmological simulations, which predict that some of the oldest stars in the Galaxy now reside in its centre. The metal-poor bulge appears to consist of multiple stellar populations that require dynamical analyses to disentangle. In this work, we undertake a detailed chemodynamical study of the metal-poor stars in the inner Galaxy. Using R ∼ 20 000 VLT/GIRAFFE spectra of 319 metal-poor (−2.55 dex ≤ [Fe/H] ≤ 0.83 dex, with $\overline{\rm {[Fe/H]}}$ = −0.84 dex) stars, we perform stellar parameter analysis and report 12 elemental abundances (C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Zn, Ba, and Ce) with precisions of ≈0.10 dex. Based on kinematic and spatial properties, we categorize the stars into four groups, associated with the following Galactic structures: the inner bulge, the outer bulge, the halo, and the disc. We find evidence that the inner and outer bulge population is more chemically complex (i.e. higher chemical dimensionality and less correlated abundances) than the halo population. This result suggests that the older bulge population was enriched by a larger diversity of nucleosynthetic events. We also find one inner bulge star with a [Ca/Mg] ratio consistent with theoretical pair-instability supernova yields and two stars that have chemistry consistent with globular cluster stars. 
    more » « less