skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D elemental abundances of stars at formation across the histories of Milky Way-mass galaxies in the FIRE simulations
ABSTRACT We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $$\approx 7 \, \rm {Gyr}$$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $$\gtrsim 12 \, \rm {Gyr}$$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $$\lesssim 0.17 \, \rm {dex}$$ at $$t_{\rm lb} = 11.6 \, \rm {Gyr}$$ to $$\sim 0.04 \, \rm {dex}$$ at present-day. Consequently, stars at $$t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in a vertically homogeneous disc, Δ[Fe/H]$$\le 0.02 \, \rm {dex}$$ within $$1 \, \rm {kpc}$$ of the galactic mid-plane, with the exception of the young stars in the inner $$\approx 4 \, \rm {kpc}$$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses.  more » « less
Award ID(s):
2045928
PAR ID:
10368301
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4270-4289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($$t_{\rm lookback} \le 9.4 \, \rm {Gyr}$$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $$1 \, \rm {kpc}$$ of the disc mid-plane is vertically homogeneous to $$\lesssim 0.008 \, \rm {dex}$$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $$\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$$ at z = 1 ($$t_{\rm lookback} = 7.8 \, \rm {Gyr}$$) to $$\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $$0.14 \, \rm {dex}$$ at z = 1, reducing to $$0.05 \, \rm {dex}$$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($$t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$$). Furthermore, elemental abundances are measurably homogeneous (to ≲0.05 dex) across a radial range of $$\Delta R \approx 3.5 \, \rm {kpc}$$ at z ≳ 1 and $$\Delta R \approx 1.7 \, \rm {kpc}$$ at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW. 
    more » « less
  2. ABSTRACT Chemical Cartography, or mapping, of our Galaxy has the potential to fully transform our view of its structure and formation. In this work, we use chemical cartography to explore the metallicity distribution of OBAF-type disc stars from the LAMOST survey and a complementary sample of disc giant stars from Gaia DR3. We use these samples to constrain the radial and vertical metallicity gradients across the Galactic disc. We also explore whether there are detectable azimuthal variations in the metallicity distribution on top of the radial gradient. For the OBAF-type star sample from LAMOST, we find a radial metallicity gradient of Δ[Fe/H]/ΔR ∼−0.078 ± 0.001 dex kpc−1 in the plane of the disc and a vertical metallicity gradient of Δ[Fe/H]/ΔZ ∼−0.15 ± 0.01 dex kpc−1 in the solar neighbourhood. The radial gradient becomes shallower with increasing vertical height, while the vertical gradient becomes shallower with increasing Galactocentric radius, consistent with other studies. We also find detectable spatially dependent azimuthal variations on top of the radial metallicity gradient at the level of ∼0.10 dex. Interestingly, the azimuthal variations appear be close to the Galactic spiral arms in one data set (Gaia DR3) but not the other (LAMOST). These results suggest that there is azimuthal structure in the Galactic metallicity distribution and that in some cases it is co-located with spiral arms. 
    more » « less
  3. Abstract Spatial patterns of stellar elemental abundances encode rich information about a galaxy’s formation history. We analyze the radial, vertical, and azimuthal variations of metals in stars, both today and at formation, in the FIRE-2 cosmological simulations of Milky Way (MW)-mass galaxies, and we compare them with the MW. The radial gradient today is steeper (more negative) for younger stars, which agrees with the MW, although radial gradients are shallower in FIRE-2. Importantly, this age dependence was present already at birth: radial gradients today are only modestly (≲0.01 dex kpc−1) shallower than at birth. Disk vertical settling gives rise to negative vertical gradients across all stars, but vertical gradients of mono-age stellar populations are weak. Similar to the MW, vertical gradients in FIRE-2 are shallower at larger radii, but they are overall shallower in FIRE-2. This vertical dependence was present already at birth: vertical gradients today are only modestly (≲0.1 dex kpc−1) shallower than at birth. Azimuthal scatter is nearly constant with radius, and it is nearly constant with age ≲8 Gyr ago but increases for older stars. Azimuthal scatter is slightly larger (≲0.04 dex) today than at formation. Galaxies with larger azimuthal scatter have a stronger radial gradient, implying that azimuthal scatter today arises primarily from the radial redistribution of gas and stars. Overall, spatial variations of stellar metallicities show only modest differences between formation and today; spatial variations today primarily reflect the conditions of stars at birth, with spatial redistribution of stars after birth contributing secondarily. 
    more » « less
  4. NA (Ed.)
    ABSTRACT We present a new scheme for the classification of the in-situ and accreted globular clusters (GCs). The scheme uses total energy E and z-component of the orbital angular momentum and is calibrated using the [Al/Fe] abundance ratio. We demonstrate that this classification results in two GC populations with distinct spatial, kinematic, and chemical abundance distributions. The in-situ GCs are distributed within the central 10 kpc of the Galaxy in a flattened configuration aligned with the Milky Way (MW) disc, while the accreted GCs have a wide distribution of distances and a spatial distribution close to spherical. In-situ and accreted GCs have different $$\rm [Fe/H]$$ distributions with the well-known bimodality present only in the metallicity distribution of the in-situ GCs. Furthermore, the accreted and in-situ GCs are well separated in the plane of $$\rm [Al/Fe]-[Mg/Fe]$$ abundance ratios and follow distinct sequences in the age–$$\rm [Fe/H]$$ plane. The in-situ GCs in our classification show a clear disc spin-up signature – the increase of median Vϕ at metallicities −1.3 < [Fe/H] < −1 similar to the spin-up in the in-situ field stars. This signature signals the MW’s disc formation, which occurred ≈11.7−12.7 Gyr ago (or at z ≈ 3.1−5.3) according to in-situ GC ages. In-situ GCs with metallicities of $$\rm [Fe/H]\gtrsim -1.3$$ were thus born in the MW disc, while lower metallicity in-situ GCs were born during early, turbulent, pre-disc stages of the evolution of the Galaxy and are part of its Aurora stellar component. 
    more » « less
  5. Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] and [Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources. 
    more » « less