skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross Evaluation of Multiple Access Schemes Using Post-Experimental Field Data for Underwater Acoustic Communications
This paper proposes a post-experimental field data reuse method to test the single carrier modulation (SCM) and orthogonal frequency division multiplexing (OFDM) signals interchangeably for multiple access underwater acoustic (UWA) communications. We call this approach the cross evaluation that transforms a set of SCM or OFDM post-experimental field data to their corresponding OFDM or SCM scheme under test (SUT) via linear matrix operation such as fast Fourier transform (FFT) and its inverse (IFFT). At the receiver side, we derived a general framework of turbo equalization (TEQ) that alters the two physical layer schemes but keeps the passband transmitted and received data unchanged. Inherently, some efficient techniques such as pre-cursor and post-cursor interference cancellation (IC), and overlap adding (OLA) operations enhance the equivalence of input and output (I/O) system model between the SCM and OFDM. The proposed approach will bring the gap between the SCM and OFDM, and evaluate the two physical layer schemes under similar or tougher test conditions. The experimental results of the undersea 2008 Surface Processes and Acoustic Communications Experiment (SPACE08) have verified the feasibility of the cross evaluation approach in terms of the BER benchmark.  more » « less
Award ID(s):
1853257
PAR ID:
10130564
Author(s) / Creator(s):
Date Published:
Journal Name:
MTS/IEEE Oceans Conf
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The realization of efficient, robust, and adaptable applications for the emergent Internet of Underwater Things enables the sustainable and effective conservation and exploitation of our oceans and waterways. Recent advances have fo- cused on Orthogonal Frequency-Division Multiplexing (OFDM) physical layers for supporting applications requiring high data rates and swift adaptation to changing underwater conditions. This prompts the need of tools for testing new OFDM-enabled underwater solutions. To this aim, this paper presents the implementation and evaluation of an OFDM-based physical layer module for the popular underwater network simulator DESERT. We aim at modeling the flexibility of the software-defined acoustic SEANet modem by realizing OFDM features that can vary in time, including the number and the selection of subcarriers and their modulation on a per-transmission basis. We demonstrate the usage of the proposed module through the DESERT-based simulation of three simple OFDM-enabled cross-layer MAC protocols in underwater acoustic networks of different sizes. The diverse and detailed set of results are obtained by using our physical layer module simply and swiftly. Our results also confirm the advantages of using the OFDM technology in solutions for underwater networking in challenging environments. 
    more » « less
  2. This paper presents a new turbo decision feedback equalizer and decoder (TDFED) for the orthogonal time-frequency space (OTFS) system of underwater mobile acoustic communications where the communication channel suffers from severe multipath and Doppler effects simultaneously. The proposed TDFED employs a set of feedforward and feedback filters in the time domain instead of the common approach that employs a normalized least mean square equalizer in the delay-Doppler domain. The receiver also utilizes low-complexity improved proportionate normalized least mean square channel estimation in the delay-Doppler domain. Practical OTFS modulation schemes are designed for acoustic transmission at a center frequency of 115 kHz and a symbol rate of 11.5 ksps (kilo-symbols-per-second). Several lake experiments in mobile communication scenarios are conducted to evaluate the proposed OTFS in comparison to the single-carrier coherent modulation (SCCM) and the orthogonal frequency division modulation (OFDM) schemes. The experimental results demonstrate that the proposed OTFS receiver effectively reduces the accuracy requirements of the Doppler compensation algorithm compared to the SCCM and OFDM schemes. The proposed TDFED algorithm achieves a much better bit error rate against long-multipath fading and severe Doppler shift than the existing delay-Doppler domain equalizers. 
    more » « less
  3. Many physical-layer security works in the literature rely on purely theoretical work or simulated results to establish the value of physical-layer security in securing communications. We consider the secrecy capacity of a wireless Gaussian wiretap channel using channel sounding measurements to analyze the potential for secure communication in a real-world scenario. A multi-input, multi-output, multi-eavesdropper (MIMOME) system is deployed using orthogonal frequency division multiplexing (OFDM) over an 802.11n wireless network. Channel state information (CSI) measurements were taken in an indoor environment to analyze time-varying scenarios and spatial variations. It is shown that secrecy capacity is highly affected by environmental changes, such as foot traffic, network congestion, and propagation characteristics of the physical environment. We also present a numerical method for calculating MIMOME secrecy capacity in general and comment on the use of OFDM with regard to calculating secrecy capacity. 
    more » « less
  4. The presented data contain recordings of underwater acoustic transmissions collected from a field experiment whose goal was to characterize self-interference for in-band full-duplex underwater acoustic communications. The experiment was conducted in the Lake of Tuscaloosa in July 2019. A single transmission-receiving line was deployed off a boat that was moored in the center of the lake. The transmission-receiving line had one acoustic transmitter and eight hydrophone receivers. Two types of signals, binary phase-shift keying (BPSK) and orthogonal frequency-division multiplexing (OFDM), were transmitted at the center frequency of 28 kHz. The receptions were recorded in .wav audio files by eighter high-precision digital hydrophones. In addition to the acoustic data, a complete set of source information, environmental measurements, and processed impulse responses are included in the data package. Matlab programs are also provided to retrieve the data and facilitate further analysis. 
    more » « less
  5. High mobility environment leads to severe Doppler effects and poses serious challenges to the conventional physical layer based on the widely popular orthogonal frequency division multiplexing (OFDM). The recent emergence of orthogonal time frequency space (OTFS) modulation, along with its many related variants, presents a promising solution to overcome such channel Doppler effects. This paper aims to clearly establish the relationships among the various manifestations of OTFS. Among these related modulations, we identify their connections, common features, and distinctions. Building on existing works, this work provides a general overview of various OTFS-related detection schemes and performance comparisons. We first provide an overview of OFDM and filter bank multi-carrier (FBMC) by demonstrating OTFS as a precoded FBMC through the introduction of inverse symplectic finite Fourier transform (ISFFT). We explore the relationship between OTFS and related modulation schemes with similar characteristics. We provide an effective channel model for high-mobility channels and offer a unified detection representation. We provide numerical comparisons of power spectrum density (PSD) and bit error rate (BER) to underscore the benefit of these modulation schemes in high-mobility scenarios. We also evaluate various detection schemes, revealing insights into their efficacies. We discuss opportunities and challenges for OTFS in high mobility, setting the stage for future research and development in this field. 
    more » « less