skip to main content

Title: Ion Dynamics in the Meso-scale 3-D Kelvin–Helmholtz Instability: Perspectives From Test Particle Simulations
Over three decades of in-situ observations illustrate that the Kelvin–Helmholtz (KH) instability driven by the sheared flow between the magnetosheath and magnetospheric plasma often occurs on the magnetopause of Earth and other planets under various interplanetary magnetic field (IMF) conditions. It has been well demonstrated that the KH instability plays an important role for energy, momentum, and mass transport during the solar-wind-magnetosphere coupling process. Particularly, the KH instability is an important mechanism to trigger secondary small scale (i.e., often kinetic-scale) physical processes, such as magnetic reconnection, kinetic Alfvén waves, ion-acoustic waves, and turbulence, providing the bridge for the coupling of cross scale physical processes. From the simulation perspective, to fully investigate the role of the KH instability on the cross-scale process requires a numerical modeling that can describe the physical scales from a few Earth radii to a few ion (even electron) inertial lengths in three dimensions, which is often computationally expensive. Thus, different simulation methods are required to explore physical processes on different length scales, and cross validate the physical processes which occur on the overlapping length scales. Test particle simulation provides such a bridge to connect the MHD scale to the kinetic scale. This study applies different test particle approaches and cross validates the different results against one another to investigate the behavior of different ion species (i.e., H+ and O+), which include particle distributions, mixing and heating. It shows that the ion transport rate is about 10 25  particles/s, and mixing diffusion coefficient is about 10 10  m 2  s −1 regardless of the ion species. Magnetic field lines change their topology via the magnetic reconnection process driven by the three-dimensional KH instability, connecting two flux tubes with different temperature, which eventually causes anisotropic temperature in the newly reconnected flux.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Romain Maggiolo, Nicolas André (Ed.)
    As space plasmas are highly collisionless and involve several temporal and spatial scales, understanding the physical mechanisms responsible for energy transport between these scales is a challenge. Ideally, to study cross-scale space plasma processes, simultaneous multi-spacecraft measurements in three different scales (fluid, ion and electron) would be required together with adequate instrumental temporal resolution. In this chapter we discuss cross-scale energy transport mechanisms mainly focusing on velocity shear driven Kelvin-Helmholtz instability and resulting secondary instabilities and processes, e.g, magnetic reconnection, kinetic magnetosonic waves and kinetic Alfven waves/mode conversion. 
    more » « less
  2. Abstract

    Three‐dimensional X‐line spreading is important for the coupling between global dynamics and local kinetic physics of magnetic reconnection. Using large‐scale 3‐D particle‐in‐cell simulations, we investigate the spreading of the X‐line out of the reconnection plane under a strong guide field in asymmetric reconnection. The X‐line spreading speed depends strongly on the equilibrium current sheet thickness. In a simulation with a thick, ion‐scale equilibrium current sheet (CS), the X‐line spreads at the ambient species drift speeds, which are significantly lower than the Alfvén speed based on the guide field(sub‐Alfvénic spreading). In simulations with a sub‐ion‐scale CS, the X‐line spreads atinstead (Alfvénic spreading). An Alfvénic signal consistent with kinetic Alfvén waves develops and propagates, leading to CS thinning and extending, which ultimately causes reconnection onset. The continuous onset of reconnection along the propagation direction of the signal manifests as Alfvénic X‐line spreading. The strong dependence on the CS thickness of the spreading speeds and the orientation of the X‐line are consistent with the collisionless tearing instability. Our simulations indicate that when the collisionless tearing growth is sufficiently strong in a thinner CS such that, Alfvénic X‐line spreading can effectively take place. Our results compare favorably with a number of numerical simulations and recent magnetopause observations. An important implication of this work is that the magnetopause CS is typically too thick for the X‐line to spread at the Alfvén speed.

    more » « less
  3. Abstract

    At the Earth's low‐latitude magnetopause, clear signatures of the Kelvin‐Helmholtz (KH) waves have been frequently observed during periods of the northward interplanetary magnetic field (IMF), whereas these signatures have been much less frequently observed during the southward IMF. Here, we performed the first 3‐D fully kinetic simulation of the magnetopause KH instability under the southward IMF condition. The simulation demonstrates that fast magnetic reconnection is induced at multiple locations along the vortex edge in an early nonlinear growth phase of the instability. The reconnection outflow jets significantly disrupt the flow of the nonlinear KH vortex, while the disrupted turbulent flow strongly bends and twists the reconnected field lines. The resulting coupling of the complex field and flow patterns within the magnetopause boundary layer leads to a quick decay of the vortex structure, which may explain the difference in the observation probability of KH waves between northward and southward IMF conditions.

    more » « less
  4. Collisionless magnetic reconnection typically requires kinetic treatment that is, in general, computationally expensive compared to fluid-based models. In this study, we use the magnetohydrodynamics with an adaptively embedded particle-in-cell (MHD-AEPIC) model to study the interaction of two magnetic flux ropes. This innovative model embeds one or more adaptive PIC regions into a global MHD simulation domain such that the kinetic treatment is only applied in regions where the kinetic physics is prominent. We compare the simulation results among three cases: (1) MHD with adaptively embedded PIC regions, (2) MHD with statically (or fixed) embedded PIC regions, and (3) a full PIC simulation. The comparison yields good agreement when analyzing their reconnection rates and magnetic island separations as well as the ion pressure tensor elements and ion agyrotropy. In order to reach good agreement among the three cases, large adaptive PIC regions are needed within the MHD domain, which indicates that the magnetic island coalescence problem is highly kinetic in nature, where the coupling between the macro-scale MHD and micro-scale kinetic physics is important. 
    more » « less
  5. Abstract

    Magnetic reconnection converts, often explosively, stored magnetic energy to particle energy in space and in the laboratory. Through processes operating on length scales that are tiny, it facilitates energy conversion over dimensions of, in some cases, hundreds of Earth radii. In addition, it is the mechanism behind large current disruptions in fusion machines, and it can explain eruptive behavior in astrophysics. We have known about the importance of magnetic reconnection for quite some time based on space observations. Theory and modeling employed magnetized fluids, a very simplistic description. While successful at modeling the large‐scale consequences of reconnection, it is ill suited to describe the engine itself. This is because, at its heart, magnetic reconnection in space is kinetic, that is, governed by the intricate interaction of charged particles with the electromagnetic fields they create. This complex interaction occurs in very localized regions and involves very short temporal variations. Researching reconnection requires the ability to measure these processes as well as to express them in models vastly more complex than fluid approaches. Until very recently, neither of these capabilities existed. With the advent of NASA's Magnetospheric Multiscale mission and modern modeling advances, this has now changed, and we have now determined its small‐scale structure in exquisite detail. In this paper, we review recent research results to predict what will be achieved in the future. We discuss how reconnection contributes to the evolution of larger‐scale systems, and its societal impacts in the context of threatening space hazards, customarily referred to as “space weather.”

    more » « less