Interactions between biomolecules are characterized by where they occur and how they are organized, e.g., the alignment of lipid molecules to form a membrane. However, spatial and angular information are mixed within the image of a fluorescent molecule–the microscope’s dipole-spread function (DSF). We demonstrate the pixOL algorithm to simultaneously optimize all pixels within a phase mask to produce an engineered Green’s tensor–the dipole extension of point-spread function engineering. The pixOL DSF achieves optimal precision to simultaneously measure the 3D orientation and 3D location of a single molecule, i.e., 4.1° orientation, 0.44 sr wobble angle, 23.2 nm lateral localization, and 19.5 nm axial localization precisions in simulations over a 700 nm depth range using 2500 detected photons. The pixOL microscope accurately and precisely resolves the 3D positions and 3D orientations of Nile red within a spherical supported lipid bilayer, resolving both membrane defects and differences in cholesterol concentration in six dimensions.
more »
« less
Three-dimensional nanoscale localization of point-like objects using self-interference digital holography
We propose localizing point-like fluorescent emitters in three dimensions with nanometer precision throughout large volumes using self-interference digital holography (SIDH). SIDH enables imaging of incoherently emitting objects over large axial ranges without refocusing, and single molecule localization techniques allow sub-50 nm resolution in the lateral and axial dimensions. We demonstrate three-dimensional localization with SIDH by imaging 100 and 40 nm fluorescent nanospheres. With 49,000 photons detected, SIDH achieves a localization precision of 5 nm laterally and 40 nm axially. We are able to detect the nanospheres from as few as 13,000 detected photons.
more »
« less
- Award ID(s):
- 1555576
- PAR ID:
- 10130684
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 2
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 591
- Size(s):
- Article No. 591
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Single‐molecule localization microscopy (SMLM) precisely localizes individual fluorescent molecules within the wide field of view (FOV). However, the localization precision is fundamentally limited to around 20 nm due to the physical photon limit of individual stochastic single‐molecule emissions. Using spectroscopic SMLM (sSMLM) to resolve their distinct fluorescence emission spectra, individual fluorophore is specifically distinguished and identified, even the ones of the same type. Consequently, the reported photon‐accumulation enhanced reconstruction (PACER) method accumulates photons over repeated stochastic emissions from the same fluorophore to significantly improve the localization precision. This work shows the feasibility of PACER by resolving quantum dots that are 6.1 nm apart with 1.7 nm localization precision. Next, a Monte Carlo simulation is used to investigate the success probability of the PACER's classification process for distance measurements under different conditions. Finally, PACER is used to resolve and measure the lengths of DNA origami nanorulers with an inter‐molecular spacing as small as 6 nm. Notably, the demonstrated sub‐2 nm localization precision bridges the detection range between Förster resonance energy transfer (FRET) and conventional SMLM. Fully exploiting the underlying imaging capability can potentially enable high‐throughput inter‐molecular distance measurements over a large FOV.more » « less
-
By manipulating the spectral dispersion of detected photons, spectroscopic single-molecule localization microscopy (sSMLM) permits concurrent high-throughput single-molecular spectroscopic analysis and imaging. Despite its promising potential, using discrete optical components and managing the delicate balance between spectral dispersion and spatial localization compromise its performance, including non-uniform spectral dispersion, high transmission loss of grating, high optical alignment demands, and reduced precision. We designed a dual-wedge prism (DWP)-based monolithic imaging spectrometer to overcome these challenges. We optimized the DWP for spectrally dispersing focused beam without deviation and with minimal wavefront error. We integrated all components into a compact assembly, minimizing total transmission loss and significantly reducing optical alignment requirements. We show the feasibility of DWP using ray-tracing and numerical simulations. We validated our numerical simulations by experimentally imaging individual nanospheres and confirmed that DWP-sSMLM achieved much improved spatial and spectral precisions of grating-based sSMLM. We also demonstrated DWP-sSMLM in 3D multi-color imaging of cells.more » « less
-
The past decade has brought many innovations in optical design for 3D super-resolution imaging of point-like emitters, but these methods often focus on single-emitter localization precision as a performance metric. Here, we propose a simple heuristic for designing a point spread function (PSF) that allows for precise measurement of the distance between two emitters. We discover that there are two types of PSFs that achieve high performance for resolving emitters in 3D, as quantified by the Cramér-Rao bounds for estimating the separation between two closely spaced emitters. One PSF is very similar to the existing Tetrapod PSFs; the other is a rotating single-spot PSF, which we call the crescent PSF. The latter exhibits excellent performance for localizing single emitters throughout a 1-µm focal volume (localization precisions of 7.3 nm inx, 7.7 nm iny, and 18.3 nm inzusing 1000 detected photons), and it distinguishes between one and two closely spaced emitters with superior accuracy (25-53% lower error rates than the best-performing Tetrapod PSF, averaged throughout a 1-µm focal volume). Our study provides additional insights into optimal strategies for encoding 3D spatial information into optical PSFs.more » « less
-
Abstract Spectroscopic single-molecule localization microscopy (sSMLM) was used to achieve simultaneous imaging and spectral analysis of single molecules for the first time. Current sSMLM fundamentally suffers from a reduced photon budget because the photons from individual stochastic emissions are divided into spatial and spectral channels. Therefore, both spatial localization and spectral analysis only use a portion of the total photons, leading to reduced precisions in both channels. To improve the spatial and spectral precisions, we present symmetrically dispersed sSMLM, or SDsSMLM, to fully utilize all photons from individual stochastic emissions in both spatial and spectral channels. SDsSMLM achieved 10-nm spatial and 0.8-nm spectral precisions at a total photon budget of 1000. Compared with the existing sSMLM using a 1:3 splitting ratio between spatial and spectral channels, SDsSMLM improved the spatial and spectral precisions by 42% and 10%, respectively, under the same photon budget. We also demonstrated multicolour imaging of fixed cells and three-dimensional single-particle tracking using SDsSMLM. SDsSMLM enables more precise spectroscopic single-molecule analysis in broader cell biology and material science applications.more » « less
An official website of the United States government
