skip to main content


Title: Efficient nonparametric belief propagation for pose estimation and manipulation of articulated objects
Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part’s pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a “pull” message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks.  more » « less
Award ID(s):
1638047
PAR ID:
10130820
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Science Robotics
Volume:
4
Issue:
30
ISSN:
2470-9476
Page Range / eLocation ID:
eaaw4523
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose in order to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multi-modal uncertainty. In this paper, we propose a factored approach to estimate the poses of articulated objects using an efficient non-parametric belief propagation algorithm. We consider inputs as geometrical models with articulation constraints, and observed 3D sensor data. The proposed framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov Random Field (MRF) where each hidden node (continuous pose variable) models an observed object-part's pose and each edge denotes an articulation constraint between a pair of parts. We propose articulated pose estimation by a Pull Message Passing algorithm for Nonparametric Belief Propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. 
    more » « less
  2. Perceiving the position and orientation of objects (i.e., pose estimation) is a crucial prerequisite for robots acting within their natural environment. We present a hardware acceleration approach to enable real-time and energy efficient articulated pose estimation for robots operating in unstructured environments. Our hardware accelerator implements Nonparametric Belief Propagation (NBP) to infer the belief distribution of articulated object poses. Our approach is on average, 26× more energy efficient than a high-end GPU and 11× faster than an embedded low-power GPU implementation. Moreover, we present a Monte-Carlo Perception Library generated from high-level synthesis to enable reconfigurable hardware designs on FPGA fabrics that are better tuned to user-specified scene, resource, and performance constraints. 
    more » « less
  3. null (Ed.)
    As autonomous robots interact and navigate around real-world environments such as homes, it is useful to reliably identify and manipulate articulated objects, such as doors and cabinets. Many prior works in object articulation identification require manipulation of the object, either by the robot or a human. While recent works have addressed predicting articulation types from visual observations alone, they often assume prior knowledge of category-level kinematic motion models or sequence of observations where the articulated parts are moving according to their kinematic constraints. In this work, we propose FormNet, a neural network that identifies the articulation mechanisms between pairs of object parts from a single frame of an RGB-D image and segmentation masks. The network is trained on 100k synthetic images of 149 articulated objects from 6 categories. Synthetic images are rendered via a photorealistic simulator with domain randomization. Our proposed model predicts motion residual flows of object parts, and these flows are used to determine the articulation type and parameters. The network achieves an articulation type classification accuracy of 82.5% on novel object instances in trained categories. Experiments also show how this method enables generalization to novel categories and can be applied to real-world images without fine-tuning. 
    more » « less
  4. In recent years, the field of legged robotics has seen growing interest in enhancing the capabilities of these robots through the integration of articulated robotic arms. However, achieving successful loco-manipulation, especially involving interaction with heavy objects, is far from straightforward, as object manipulation can introduce substantial disturbances that impact the robot’s locomotion. This paper presents a novel framework for legged loco-manipulation that considers whole-body coordination through a hierarchical optimization-based control framework. First, an online manipulation planner computes the manipulation forces and manipulated object task-based reference trajectory. Then, pose optimization aligns the robot’s trajectory with kinematic constraints. The resultant robot reference trajectory is executed via a linear MPC controller incorporating the desired manipulation forces into its prediction model. Our approach has been validated in simulation and hardware experiments, highlighting the necessity of whole-body optimization compared to the baseline locomotion MPC when interacting with heavy objects. Experimental results with Unitree Aliengo, equipped with a custom-made robotic arm, showcase its ability to lift and carry an 8kg payload and manipulate doors. 
    more » « less
  5. We present a filtering-based method for semantic mapping to simultaneously detect objects and localize their 6 degree-of-freedom pose. For our method, called Contextual Temporal Mapping (or CT-Map), we represent the semantic map as a belief over object classes and poses across an observed scene. Inference for the semantic mapping problem is then modeled in the form of a Conditional Random Field (CRF). CT-Map is a CRF that considers two forms of relationship potentials to account for contextual relations between objects and temporal consistency of object poses, as well as a measurement potential on observations. A particle filtering algorithm is then proposed to perform inference in the CT-Map model. We demonstrate the efficacy of the CT-Map method with a Michigan Progress Fetch robot equipped with a RGB-D sensor. Our results demonstrate that the particle filtering based inference of CT-Map provides improved object detection and pose estimation with respect to baseline methods that treat observations as independent samples of a scene. 
    more » « less