skip to main content


Title: 3D Reconstruction of Tubular Structure Using Radially Deployed Projections
Acquiring volumetric data plays a crucial role in the field of medical imaging. 3D reconstruction is mostly performed using multislice image datasets. The objective of this research is to introduce a magnetic resonance technique for imaging tubular structures and their 3D reconstructions using multiple radially deployed projections. The oblique projection sequence was evaluated on a phantom, and multislice dataset is collected using the same phantom for the reference. To compute the correctness of the 3D reconstruction process, the resulting meshes were compared using the Hausdorff Distance Calculation and Point Cloud Comparison methods.  more » « less
Award ID(s):
1646566
NSF-PAR ID:
10130862
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)
Page Range / eLocation ID:
322 to 327
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study introduces a technique for simultaneous multislice (SMS) cardiac magnetic resonance fingerprinting (cMRF), which improves the slice coverage when quantifying myocardialT1,T2, andM0. The single‐slice cMRF pulse sequence was modified to use multiband (MB) RF pulses for SMS imaging. Different RF phase schedules were used to excite each slice, similar to POMP or CAIPIRINHA, which imparts tissues with a distinguishable and slice‐specific magnetization evolution over time. Because of the high net acceleration factor (R = 48 in plane combined with the slice acceleration), images were first reconstructed with a low rank technique before matching data to a dictionary of signal timecourses generated by a Bloch equation simulation. The proposed method was tested in simulations with a numerical relaxation phantom. Phantom and in vivo cardiac scans of 10 healthy volunteers were also performed at 3 T. With single‐slice acquisitions, the mean relaxation times obtained using the low rank cMRF reconstruction agree with reference values. The low rank method improves the precision inT1andT2for both single‐slice and SMS cMRF, and it enables the acquisition of maps with fewer artifacts when using SMS cMRF at higher MB factors. With this technique, in vivo cardiac maps were acquired from three slices simultaneously during a breathhold lasting 16 heartbeats. SMS cMRF improves the efficiency and slice coverage of myocardialT1andT2mapping compared with both single‐slice cMRF and conventional cardiac mapping sequences. Thus, this technique is a first step toward whole‐heart simultaneousT1andT2quantification with cMRF.

     
    more » « less
  2. Telecystoscopy can lower the barrier to access critical urologic diagnostics for patients around the world. A major challenge for robotic control of flexible cystoscopes and intuitive teleoperation is the pose estimation of the scope tip. We propose a novel real-time camera localization method using video recordings from a prior cystoscopy and 3D bladder reconstruction to estimate cystoscope pose within the bladder during follow-up telecystoscopy. We map prior video frames into a low-dimensional space as a dictionary so that a new image can be likewise mapped to efficiently retrieve its nearest neighbor among the dictionary images. The cystoscope pose is then estimated by the correspondence among the new image, its nearest dictionary image, and the prior model from 3D reconstruction. We demonstrate performance of our methods using bladder phantoms with varying fidelity and a servo-controlled cystoscope to simulate the use case of bladder surveillance through telecystoscopy. The servo-controlled cystoscope with 3 degrees of freedom (angulation, roll, and insertion axes) was developed for collecting cystoscope videos from bladder phantoms. Cystoscope videos were acquired in a 2.5D bladder phantom (bladder-shape cross-section plus height) with a panorama of a urothelium attached to the inner surface. Scans of the 2.5D phantom were performed in separate arc trajectories each of which is generated by actuation on the angulation with a fixed roll and insertion length. We further included variance in moving speed, imaging distance and existence of bladder tumors. Cystoscope videos were also acquired in a water-filled 3D silicone bladder phantom with hand-painted vasculature. Scans of the 3D phantom were performed in separate circle trajectories each of which is generated by actuation on the roll axis under a fixed angulation and insertion length. These videos were used to create 3D reconstructions, dictionary sets, and test data sets for evaluating the computational efficiency and accuracy of our proposed method in comparison with a method based on global Scale-Invariant Feature Transform (SIFT) features, named SIFT-only. Our method can retrieve the nearest dictionary image for 94–100% of test frames in under 55[Formula: see text]ms per image, whereas the SIFT-only method can only find the image match for 56–100% of test frames in 6000–40000[Formula: see text]ms per image depending on size of the dictionary set and richness of SIFT features in the images. Our method, with a speed of around 20 Hz for the retrieval stage, is a promising tool for real-time image-based scope localization in robotic cystoscopy when prior cystoscopy images are available. 
    more » « less
  3. Purpose

    To develop and evaluate a technique for 3D dynamic MRI of the full vocal tract at high temporal resolution during natural speech.

    Methods

    We demonstrate 2.4 × 2.4 × 5.8 mm3spatial resolution, 61‐ms temporal resolution, and a 200 × 200 × 70 mm3FOV. The proposed method uses 3D gradient‐echo imaging with a custom upper‐airway coil, a minimum‐phase slab excitation, stack‐of‐spirals readout, pseudo golden‐angle view order inkxky, linear Cartesian order alongkz, and spatiotemporal finite difference constrained reconstruction, with 13‐fold acceleration. This technique is evaluated using in vivo vocal tract airway data from 2 healthy subjects acquired at 1.5T scanner, 1 with synchronized audio, with 2 tasks during production of natural speech, and via comparison with interleaved multislice 2D dynamic MRI.

    Results

    This technique captured known dynamics of vocal tract articulators during natural speech tasks including tongue gestures during the production of consonants “s” and “l” and of consonant–vowel syllables, and was additionally consistent with 2D dynamic MRI. Coordination of lingual (tongue) movements for consonants is demonstrated via volume‐of‐interest analysis. Vocal tract area function dynamics revealed critical lingual constriction events along the length of the vocal tract for consonants and vowels.

    Conclusion

    We demonstrate feasibility of 3D dynamic MRI of the full vocal tract, with spatiotemporal resolution adequate to visualize lingual movements for consonants and vocal tact shaping during natural productions of consonant–vowel syllables, without requiring multiple repetitions.

     
    more » « less
  4. This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT). 
    more » « less
  5. Purpose

    To develop and evaluate a simultaneous multislice (SMS) reconstruction technique that provides noise reduction and leakage blocking for highly accelerated cardiac MRI.

    Methods

    ReadOutConcatenatedk‐space SPIRiT (ROCK‐SPIRiT) uses the concept of readout concatenation in image domain to represent SMS encoding, and performs coil self‐consistency as in SPIRiT‐type reconstruction in an extended k‐space, while allowing regularization for further denoising. The proposed method is implemented with and without regularization, and validated on retrospectively SMS‐accelerated cine imaging with three‐fold SMS and two‐fold in‐plane acceleration. ROCK‐SPIRiT is compared with two leakage‐blocking SMS reconstruction methods: readout‐SENSE‐GRAPPA and split slice–GRAPPA. Further evaluation and comparisons are performed using prospectively SMS‐accelerated cine imaging.

    Results

    Results on retrospectively three‐fold SMS and two‐fold in‐plane accelerated cine imaging show that ROCK‐SPIRiT without regularization significantly improves on existing methods in terms of PSNR (readout‐SENSE‐GRAPPA: 33.5 ± 3.2, split slice–GRAPPA: 34.1 ± 3.8, ROCK‐SPIRiT: 35.0 ± 3.3) and SSIM (readout‐SENSE‐GRAPPA: 84.4 ± 8.9, split slice–GRAPPA: 85.0 ± 8.9, ROCK‐SPIRiT: 88.2 ± 6.6 [in percentage]). Regularized ROCK‐SPIRiT significantly outperforms all methods, as characterized by these quantitative metrics (PSNR: 37.6 ± 3.8, SSIM: 94.2 ± 4.1 [in percentage]). The prospectively five‐fold SMS and two‐fold in‐plane accelerated data show that ROCK‐SPIRiT and regularized ROCK‐SPIRiT have visually improved image quality compared with existing methods.

    Conclusion

    The proposed ROCK‐SPIRiT technique reduces noise and interslice leakage in accelerated SMS cardiac cine MRI, improving on existing methods both quantitatively and qualitatively.

     
    more » « less