Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications. 
                        more » 
                        « less   
                    
                            
                            Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarin‐Decorated Cu 24 L 24 Metal–Organic Cages as Junctions
                        
                    
    
            Abstract Photoresponsive materials that change in response to light have been studied for a range of applications. These materials are often metastable during irradiation, returning to their pre‐irradiated state after removal of the light source. Herein, we report a polymer gel comprising poly(ethylene glycol) star polymers linked by Cu24L24metal–organic cages/polyhedra (MOCs) with coumarin ligands. In the presence of UV light, a photosensitizer, and a hydrogen donor, this “polyMOC” material can be reversibly switched between CuII, CuI, and Cu0. The instability of the MOC junctions in the CuIand Cu0states leads to network disassembly, forming CuI/Cu0solutions, respectively, that are stable until re‐oxidation to CuIIand supramolecular gelation. This reversible disassembly of the polyMOC network can occur in the presence of a fixed covalent second network generated in situ by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), providing interpenetrating supramolecular and covalent networks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832256
- PAR ID:
- 10131065
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 7
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 2784-2792
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract 3‐Hydroxypiperidinium pentaiodide was synthesized by a facile reaction in concentrated aqueous HI. Its crystal structure comprises 3‐hydroxypiperidinium cations and pentaiodide anions, the latter having geometry ofcis‐shaped chains composed of I2and I3−building units. The analysis of interatomic distances, Raman spectroscopy data, and results of DFT calculations, including non‐covalent interaction analysis, showed that the title compound exhibits a complex pattern of covalent and non‐covalent interactions. Those include I−I covalent bonds and I⋅⋅⋅I halogen bonds within the I5−anion as well as (N)H⋅⋅⋅I and (O)H⋅⋅⋅I hydrogen bonds and even weaker (C)H⋅⋅⋅I van‐der‐Waals interactions between the cations and anions.more » « less
- 
            Abstract The substituent effect on the magnitude of the circularly polarized luminescence (CPL) ofMentCAAC‐Cu‐X (X=F, Cl, Br, I, BH4, B3H8; CAAC=cyclic (alkyl)(amino)carbenes) complexes is experimentally investigated. This study examines seven pairs of enantiomeric complexes with small anionic substituents (halides, borohydrides, hydride). The complexes are fully characterized, including single crystal X‐ray diffraction studies, and chiroptical measurements show that small covalent anions induce a larger CPL magnitude. These results demonstrate that the magnitude of the CPL can be manipulated without making any modifications to the chiral ligand.more » « less
- 
            Abstract DMSO, an interesting solvent for copper‐catalyzed living radical polymerization (LRP) mediated by disproportionation, does not exhibit the greatest disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Under suitable conditions, DMSO provides 100% conversion and absence of termination, facilitating the development of complex‐architecture methodologies by living and immortal polymerizations. The mechanism yielding this level of precision is being investigated. Here we compare Cu(0)‐wire‐catalyzed LRP of methyl acrylate mediated by disproportionating ligands tris(2‐dimethylaminoethyl)amine, Me6‐TREN, tris(2‐aminoethyl)amine, TREN, and Me6‐TREN/TREN = 1/1 in presence of eight disproportionating solvents, some more efficient than DMSO in disproportionation. Unexpectedly, we observed that all solvents increased the rate of polymerization when monomer concentration decreased. This reversed trend from that of conventional LRPs demonstrates catalytic effect for disproportionating solvents. Above a certain concentration, the classic concentration‐rate dependence was observed. The external order of reaction of the apparent rate constant of propagation,kpappon solvent concentration demonstrated the highest order of reaction for the least disproportionating DMSO. Of all solvents investigated, DMSO has the highest ability to stabilize Cu(0) nanoparticles and therefore, yields the highest activity of Cu(0) nanoparticles rather than their greatest concentration. The implications of the catalytic effect of solvent in this and other reactions were discussed.more » « less
- 
            Abstract The overarching goal of this study is to effect the elimination of platinum from adducts withcis–C≡C−Pt−C≡C‐ linkages, thereby generating novel conjugated polyynes. Thus, the bis(hexatriynyl) complextrans‐(p‐tol3P)2Pt((C≡C)3H)2is treated with 1,3‐diphosphines R2C(CH2PPh2)2to generate (R2C(CH2PPh2)2)2Pt((C≡C)3H)2(14; R=c,n‐Bu;e,p‐tolCH2). These condense with the diiodide complexes R2C(CH2PPh2)2PtI2(9 a,c) in the presence of CuI (cat.) and excess HNEt2to give the title macrocycles [(R2C(CH2PPh2)2)Pt(C≡C)3]4(16 c,e) as adducts of the byproduct [H2NEt2]+I−(30–66 %). DOSY NMR experiments establish that this association is maintained in solution, but NaOAc removes the ammonium salt. The bis(triethylsilylpolyynyl) complexes (n‐Bu2C(CH2PPh2)2)Pt((C≡C)nSiEt3)2(n=2, 3) are synthesized analogously to14 c. They react with I2at rt to give mainly the diiodide complex9 cand the coupling product Et3Si(C≡CC≡C)nSiEt3. The possibility of competing reactions giving IC≡C species is investigated. Analogous reactions of the Pt4C24macrocycle16 calso give9 c, but no sp13C NMR signals or mass spectrometric Cxz+ions (x=24–100) could be detected. It is proposed that some cyclo[24]carbon is generated, but then rapidly converts to other forms of elemental carbon. No cyclotetracosane (C24H48) is detected when this sequence is carried out in the presence of PtO2and H2.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
