skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Medium‐Entropy Engineering of Magnetism in Layered Antiferromagnet Cu x Ni 2(1‐ x ) Cr x P 2 S 6
Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications.  more » « less
Award ID(s):
2238254
PAR ID:
10641321
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
35
Issue:
16
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1. 
    more » « less
  2. Cr2TiC2TxMXene was used as an adsorbent for the trace determination of heavy metals in food samples, with LOD values of 0.09 and 1.9 ng mL−1, and dynamic ranges of 0.3–90 and 6–120 μg L−1for cadmium and lead ions, respectively. 
    more » « less
  3. Abstract Superionic conductors, includingACrX2(A=Ag, Cu; X = S, Se) compounds, have attracted attention due to their low lattice thermal conductivity and high ionic conductivity. These properties are driven by structural characteristics such as anharmonicity, soft bonding, and disorder, which enhance both fast ion transport and thermal resistance. In the present study, we investigate the impact of various factors (e.g.A-site disorder, microstructure, speed of sound and chemical composition) on the thermal conductivity of the compounds CuCrS2, CuCrSe2, AgCrS2and AgCrSe2. The samples were synthesized using solid state reaction, ball milling and subsequent spark plasma sintering, and thermal diffusivity, electrical resistivity, Hall coefficients and Seebeck coefficients were measured as a function of temperature. The selenides were found to behave as degenerate semiconductors, with reasonable thermoelectric figure of merit (up to 0.79 in CuCrSe2), while the sulfides behaved as non-degenerate semiconductors with high electrical resistivity. At room temperature, all samples are in the ordered phase and show low lattice thermal conductivity ranging from 0.60 W m−1-K in AgCrSe2to 1.1 W m−1-K in CuCrSe2. Little reduction in lattice thermal conductivity was observed in the high-temperature phase, despite the increased disorder on the cation site and the onset of superionic conductivity. This suggests that the low lattice thermal conductivity inACrX2compounds is an inherent property of the crystal structure, caused by anharmonic bonding and diffuson dominated transport. 
    more » « less
  4. The viability of the electrolysis of water currently relies on expensive catalysts such as Pt that are far too impractical for industrial-scale use. Thus, there is considerable interest in developing low-cost, earth-abundant nanomaterials and their alloys as a potential alternative to existing standard catalysts. To address this issue, a synergistic approach involving theory and experiment was carried out. The former, based on density functional theory, was conducted to guide the experiment in selecting the ideal dopant and optimal concentration by focusing on 3d, 4d, and 5d elements as dopants on Ni (001) surface. Subsequently, a series of Ni1−xCrx(x= 0.01–0.09) alloy nanocrystals (NCs) with size ranging from 8.3 ± 1.6–18.2 ± 3.2 nm were colloidally synthesized to experimentally investigate the hydrogen evolution reaction (HER) activity. A compositional dependent trend for electrocatalytic activity was observed from both approaches with Ni0.92Cr0.08NCs showed the lowest ΔGHvalue and the lowest overpotential (η−10) at −10 mA cm−2current density (j), suggesting the highest HER activity among all compositions studied. Among alloy NCs, the highest performing Ni0.92Cr0.08composition displayed a mixed Volmer–Heyrovsky HER mechanism, the lowest Tafel slope, and improved stability in alkaline solutions. This study provides critical insights into enhancing the performance of earth-abundant metals through doping-induced electronic structure variation, paving the way for the design of high-efficiency catalysts for water electrolysis. 
    more » « less
  5. Abstract Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic‐like behavior of theclattice parameter in the AlB2‐type solid solution Cr1–xMoxB2(x= 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2SO4solution are reported. The activity increases with increasingx, reaching its maximum atx= 0.6 before decreasing again. At high current densities, Cr0.4Mo0.6B2outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm−2current density. Cr0.4Mo0.6B2has excellent long‐term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First‐principles calculations have correctly reproduced the nonlinear dependence of theclattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently forx= 0.6, supporting the experimental results. 
    more » « less