Abstract Cloud seeding has been widely used for enhancing wintertime snowfall, particularly to augment water resources. This study examines microphysical responses to airborne glaciogenic seeding with silver iodide (AgI) during a specific case from the Seeded and Natural Orographic Wintertime Clouds: Idaho Experiment (SNOWIE) on 11 January 2017. Ground-based and airborne remote sensing and in situ measurements were employed to assess the impact of cloud seeding on cloud properties and precipitation formation. On 11th January, AgI propagated downwind along prevailing winds, and any potential ice and snow particles created from it were identified by ground-based radar as zigzag lines of enhanced reflectivity compared to background reflectivity. As the aircraft flew several times through these seeded clouds, microphysical properties within seeded clouds can be compared to those observed in unseeded clouds. The results indicate that seeded clouds exhibited significantly enhanced ice water content (IWC; reaching up to 0.20 g m−3) and precipitating-size (>400μm) ice particle concentrations (>7 L−1) relative to unseeded clouds. Additionally, seeded clouds exhibited a 30% decrease in the mean liquid water content (LWC) and cloud droplet concentrations, indicating efficient glaciation processes influenced by AgI. Precipitating snow development in seeded clouds occurred within 15–40 min following AgI release, marked by a transition from mixed-phase clouds with abundant supercooled liquid water (SLW) to ice clouds, with lidar-measured linear depolarization ratio (LDR) increasing to >0.3. These findings underscore the effectiveness of cloud seeding in enhancing snowfall by facilitating ice initiation and growth. Significance StatementThis study investigates the microphysical response of wintertime orographic clouds to airborne glaciogenic seeding, highlighting its role in enhancing precipitation. By introducing silver iodide (AgI) into clouds with supercooled liquid water, the seeding process facilitates ice particle formation, leading to increased snowfall. Through a detailed analysis of microphysical conditions using advanced in situ and remote sensing instruments, the study reveals enhanced ice water content and efficient conversion of liquid water to ice in seeded clouds. These findings provide critical insights into cloud-seeding efficacy, particularly in regions with abundant supercooled liquid water, offering a scientific foundation for enhancing snowpack in water-scarce mountainous areas.
more »
« less
Evaluation of ARM tethered-balloon system instrumentation for supercooled liquid water and distributed temperature sensing in mixed-phase Arctic clouds
Abstract. A tethered-balloon system (TBS) has been developed and is beingoperated by Sandia National Laboratories (SNL) on behalf of the U.S.Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) UserFacility in order to collect in situ atmospheric measurements withinmixed-phase Arctic clouds. Periodic tethered-balloon flights have beenconducted since 2015 within restricted airspace at ARM's Advanced MobileFacility 3 (AMF3) in Oliktok Point, Alaska, as part of the AALCO (AerialAssessment of Liquid in Clouds at Oliktok), ERASMUS (Evaluation of RoutineAtmospheric Sounding Measurements using Unmanned Systems), and POPEYE(Profiling at Oliktok Point to Enhance YOPP Experiments) field campaigns. Thetethered-balloon system uses helium-filled 34 m3 helikites and 79 and104 m3 aerostats to suspend instrumentation that is used to measureaerosol particle size distributions, temperature, horizontal wind, pressure,relative humidity, turbulence, and cloud particle properties and tocalibrate ground-based remote sensing instruments. Supercooled liquid water content (SLWC) sondes using the vibrating-wireprinciple, developed by Anasphere Inc., were operated at Oliktok Point atmultiple altitudes on the TBS within mixed-phase clouds for over 200 h.Sonde-collected SLWC data were compared with liquid water content derivedfrom a microwave radiometer, Ka-band ARM zenith radar, and ceilometer at the AMF3, as well as liquid water content derived from AMF3 radiosonde flights. The in situ data collected by the Anasphere sensors were also compared with data collected simultaneously by an alternative SLWC sensor developed at the University of Reading, UK; both vibrating-wire instruments were typically observed to shed their ice quickly upon exiting the cloud or reaching maximum ice loading. Temperature sensing measurements distributed with fiber optic tethered balloons were also compared with AMF3 radiosonde temperature measurements. Combined, the results indicate that TBS-distributedtemperature sensing and supercooled liquid water measurements are inreasonably good agreement with remote sensing and radiosonde-basedmeasurements of both properties. From these measurements and sensorevaluations, tethered-balloon flights are shown to offer an effective methodof collecting data to inform and constrain numerical models, calibrate andvalidate remote sensing instruments, and characterize the flight environmentof unmanned aircraft, circumventing the difficulties of in-cloud unmanned aircraft flights such as limited flight time and in-flight icing.
more »
« less
- PAR ID:
- 10131281
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 6845 to 6864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone.more » « less
-
Abstract. The onset of ice nucleation in mixed-phase clouds determines the lifetime and microphysical properties of ice clouds. In this work, we develop a novel method that differentiates between various phases of mixed-phase clouds, such as clouds dominated by pure liquid or pure ice segments, compared with those having ice crystals surrounded by supercooled liquid water droplets or vice versa. Using this method, we examine the relationship between the macrophysical and microphysical properties of Southern Ocean mixed-phase clouds at −40 to 0 °C (e.g. stratiform and cumuliform clouds) based on the in situ aircraft-based observations during the US National Science Foundation Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) flight campaign. The results show that the exchange between supercooled liquid water and ice crystals from a macrophysical perspective, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the phase exchange from a microphysical perspective, represented by the increasing ice water content (IWC), decreasing liquid water content (LWC), increasing ice mass fraction, and increasing ice particle number fraction (IPNF). The mass exchange between liquid and ice becomes more significant during phase 3 when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show a significant phase change from liquid to ice at a similar temperature (i.e. −17.5 °C) among three types of definitions of mixed-phase clouds based on ice spatial ratio, ice mass fraction, or IPNF. Aerosol indirect effects are quantified for different phases using number concentrations of aerosols greater than 100 or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice-nucleating particles (INPs), which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant in phase 2 when ice crystals just start to appear in the mixed phase compared with phase 3 when pure ICRs have formed, possibly due to the competing aerosol indirect effects on primary and secondary ice production in phase 3. The thermodynamic and dynamic conditions are quantified for each phase. The results show stronger in-cloud turbulence and higher updraughts in phases 2 and 3 when liquid and ice coexist compared with pure liquid or ice (phases 1 and 4, respectively). The highest updraughts and turbulence are seen in phase 3 when supercooled liquid droplets are surrounded by ice crystals. These results indicate both updraughts and turbulence support the maintenance of supercooled liquid water amongst ice crystals. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics through various stages of mixed-phase cloud evolution based on this new method that categorizes cloud phases.more » « less
-
Abstract For a given cloud, whether the cloud top is predominately made up of ice crystals or supercooled liquid droplets plays a large role in the clouds overall radiative effects. This study uses collocated airborne radar, lidar, and thermodynamic data from 12 high‐altitude flight legs during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) to characterize Southern Ocean (SO) cold sector cloud top phase (i.e., within 96 m of top) as a function of cloud top temperature (CTT). A training data set was developed to create probabilistic phase classifications based on High Spectral Resolution Lidar data and Cloud Radar data. These classifications were then used to identify dominant cloud top phase. Case studies are presented illustrating examples of supercooled liquid water at cloud top at different CTT ranges over the SO (−3°C < CTTs < −28°C). During SOCRATES, 67.4% of sampled cloud top had CTTs less than 0°C. Of the subfreezing cloud tops sampled, 91.7% had supercooled liquid water present in the top 96 m and 74.9% were classified entirely as liquid‐bearing. Liquid‐bearing cloud tops were found at CTTs as cold as −30°C. Horizontal cloud extent was also determined as a function of median cloud top height.more » « less
-
null (Ed.)Abstract. Vertical profiles of aerosols are inadequately observed and poorlyrepresented in climate models, contributing to the current large uncertaintyassociated with aerosol–cloud interactions. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and CloudExperiments in the Eastern North Atlantic (ACE-ENA) aircraft field campaignnear the Azores islands provided ample observations of verticaldistributions of aerosol and cloud properties. Here we utilize the in situaircraft measurements from the ACE-ENA and ground-based remote-sensing dataalong with an aerosol-aware Weather Research and Forecast (WRF) model tocharacterize the aerosols due to long-range transport over a remote regionand to assess their possible influence on marine-boundary-layer (MBL)clouds. The vertical profiles of aerosol and cloud properties measured viaaircraft during the ACE-ENA campaign provide detailed information revealingthe physical contact between transported aerosols and MBL clouds. TheEuropean Centre for Medium-Range Weather Forecasts Copernicus Atmosphere Monitoring Service (ECMWF-CAMS) aerosol reanalysis data can reproduce the key features of aerosolvertical profiles in the remote region. The cloud-resolving WRF sensitivityexperiments with distinctive aerosol profiles suggest that the transportedaerosols and MBL cloud interactions (ACIs) require not only aerosol plumes to get close to the marine-boundary-layer top but also large cloud topheight variations. Based on those criteria, the observations show that theoccurrence of ACIs involving the transport of aerosol over the eastern NorthAtlantic (ENA) is about 62 % in summer. For the case with noticeable long-range-transport aerosol effects on MBL clouds, the susceptibilities of dropleteffective radius and liquid water content are −0.11 and +0.14,respectively. When varying by a similar magnitude, aerosols originatingfrom the boundary layer exert larger microphysical influence on MBL cloudsthan those entrained from the free troposphere.more » « less
An official website of the United States government

