skip to main content

Title: Perception of Social Intelligence in Robots Performing False-Belief Tasks
This study evaluated how a robot demonstrating a Theory of Mind (ToM) influenced human perception of social intelligence and animacy in a human-robot interaction. Data was gathered through an online survey where participants watched a video depicting a NAO robot either failing or passing the Sally-Anne false-belief task. Participants (N = 60) were randomly assigned to either the Pass or Fail condition. A Perceived Social Intelligence Survey and the Perceived Intelligence and Animacy subsections of the Godspeed Questionnaire were used as measures. The Godspeed was given before viewing the task to measure participant expectations, and again after to test changes in opinion. Our findings show that robots demonstrating ToM significantly increase perceived social intelligence, while robots demonstrating ToM deficiencies are perceived as less socially intelligent.  more » « less
Award ID(s):
1757929 1719027
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on Robot and Human Interactive Communication (RO-MAN)
Page Range / eLocation ID:
1 to 7
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Research in creative robotics continues to expand across all creative domains, including art, music and language. Creative robots are primarily designed to be task specific, with limited research into the implications of their design outside their core task. In the case of a musical robot, this includes when a human sees and interacts with the robot before and after the performance, as well as in between pieces. These non-musical interaction tasks such as the presence of a robot during musical equipment set up, play a key role in the human perception of the robot however have received only limited attention. In this paper, we describe a new audio system using emotional musical prosody, designed to match the creative process of a musical robot for use before, between and after musical performances. Our generation system relies on the creation of a custom dataset for musical prosody. This system is designed foremost to operate in real time and allow rapid generation and dialogue exchange between human and robot. For this reason, the system combines symbolic deep learning through a Conditional Convolution Variational Auto-encoder, with an emotion-tagged audio sampler. We then compare this to a SOTA text-to-speech system in our robotic platform, Shimon the marimba player.We conducted a between-groups study with 100 participants watching a musician interact for 30 s with Shimon. We were able to increase user ratings for the key creativity metrics; novelty and coherence, while maintaining ratings for expressivity across each implementation. Our results also indicated that by communicating in a form that relates to the robot’s core functionality, we can raise likeability and perceived intelligence, while not altering animacy or anthropomorphism. These findings indicate the variation that can occur in the perception of a robot based on interactions surrounding a performance, such as initial meetings and spaces between pieces, in addition to the core creative algorithms. 
    more » « less
  2. null (Ed.)
    Robotic social intelligence is increasingly important. However, measures of human social intelligence omit basic skills, and robot-specific scales do not focus on social intelligence. We combined human robot interaction concepts of beliefs, desires, and intentions with psychology concepts of behaviors, cognitions, and emotions to create 20 Perceived Social Intelligence (PSI) Scales to comprehensively measure perceptions of robots with a wide range of embodiments and behaviors. Participants rated humanoid and non-humanoid robots interacting with people in five videos. Each scale had one factor and high internal consistency, indicating each measures a coherent construct. Scales capturing perceived social information processing skills (appearing to recognize, adapt to, and predict behaviors, cognitions, and emotions) and scales capturing perceived skills for identifying people (appearing to identify humans, individuals, and groups) correlated strongly with social competence and constituted the Mind and Behavior factors. Social presentation scales (appearing friendly, caring, helpful, trustworthy, and not rude, conceited, or hostile) relate more to Social Response to Robots Scales and Godspeed Indices, form a separate factor, and predict positive feelings about robots and wanting social interaction with them. For a comprehensive measure, researchers can use all PSI 20 scales for free. Alternatively, they can select the most relevant scales for their projects. 
    more » « less
  3. This article examines how people respond to robot-administered verbal and physical punishments. Human participants were tasked with sorting colored chips under time pressure and were punished by a robot when they made mistakes, such as inaccurate sorting or sorting too slowly. Participants were either punished verbally by being told to stop sorting for a fixed time, or physically, by restraining their ability to sort with an in-house crafted robotic exoskeleton. Either a human experimenter or the robot exoskeleton administered punishments, with participant task performance and subjective perceptions of their interaction with the robot recorded. The results indicate that participants made more mistakes on the task when under the threat of robot-administered punishment. Participants also tended to comply with robot-administered punishments at a lesser rate than human-administered punishments, which suggests that humans may not afford a robot the social authority to administer punishments. This study also contributes to our understanding of compliance with a robot and whether people accept a robot’s authority to punish. The results may influence the design of robots placed in authoritative roles and promote discussion of the ethical ramifications of robot-administered punishment. 
    more » « less
  4. A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems. 
    more » « less
  5. As social robots become increasingly prevalent in day-to-day environments, they will participate in conversations and appropriately manage the information shared with them. However, little is known about how robots might appropriately discern the sensitivity of information, which has major implications for human-robot trust. As a first step to address a part of this issue, we designed a privacy controller, CONFIDANT, for conversational social robots, capable of using contextual metadata (e.g., sentiment, relationships, topic) from conversations to model privacy boundaries. Afterwards, we conducted two crowdsourced user studies. The first study (n = 174) focused on whether a variety of human-human interaction scenarios were perceived as either private/sensitive or non-private/non-sensitive. The findings from our first study were used to generate association rules. Our second study (n = 95) evaluated the effectiveness and accuracy of the privacy controller in human-robot interaction scenarios by comparing a robot that used our privacy controller against a baseline robot with no privacy controls. Our results demonstrate that the robot with the privacy controller outperforms the robot without the privacy controller in privacy-awareness, trustworthiness, and social-awareness. We conclude that the integration of privacy controllers in authentic human-robot conversations can allow for more trustworthy robots. This initial privacy controller will serve as a foundation for more complex solutions. 
    more » « less