skip to main content

Title: Spatial power spectra of dust across the Local Group: No constraint on disc scale height

We analyse the 1D spatial power spectra of dust surface density and mid to far-infrared emission at $24\!-\!500\, \mu$m in the LMC, SMC, M31, and M33. By forward-modelling the point spread function (PSF) on the power spectrum, we find that nearly all power spectra have a single power-law and point source component. A broken power-law model is only favoured for the LMC 24 μm MIPS power spectrum and is due to intense dust heating in 30 Doradus. We also test for local power spectrum variations by splitting the LMC and SMC maps into 820 pc boxes. We find significant variations in the power-law index with no strong evidence for breaks. The lack of a ubiquitous break suggests that the spatial power spectrum does not constrain the disc scale height. This contradicts claims of a break where the turbulent motion changes from 3D to 2D. The power spectrum indices in the LMC, SMC, and M31 are similar (2.0–2.5). M33 has a flatter power spectrum (1.3), similar to more distant spiral galaxies with a centrally-concentrated H2 distribution. We compare the power spectra of H i, CO, and dust in M31 and M33, and find that H i power spectra are consistently flatter than CO power spectra. These results cast doubt on the idea that the spatial power spectrum traces large scale turbulent motion in nearby galaxies. Instead, we find that the spatial power spectrum is influenced by (1) the PSF on scales below ∼3 times the FWHM, (2) bright compact regions (30 Doradus), and (3) the global morphology of the tracer (an exponential CO disc).

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 2663-2682
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT In hierarchical structure formation, metal-poor stars in and around the Milky Way (MW) originate primarily from mergers of lower mass galaxies. A common expectation is therefore that metal-poor stars should have isotropic, dispersion-dominated orbits that do not correlate strongly with the MW disc. However, recent observations of stars in the MW show that metal-poor ($\rm {[Fe/H]}\lesssim -2$) stars are preferentially on prograde orbits with respect to the disc. Using the Feedback In Realistic Environments 2 (FIRE-2) suite of cosmological zoom-in simulations of MW/M31-mass galaxies, we investigate the prevalence and origin of prograde metal-poor stars. Almost all (11 of 12) of our simulations have metal-poor stars on preferentially prograde orbits today and throughout most of their history: we thus predict that this is a generic feature of MW/M31-mass galaxies. The typical prograde-to-retrograde ratio is ∼2:1, which depends weakly on stellar metallicity at $\rm {[Fe/H]}\lesssim -1$. These trends predicted by our simulations agree well with MW observations. Prograde metal-poor stars originate largely from a single Large/Small Magellanic Cloud (LMC/SMC)-mass gas-rich merger $7\!-\!12.5\, \rm {Gyr}$ ago, which deposited existing metal-poor stars and significant gas on an orbital vector that sparked the formation of and/or shaped the orientation of a long-lived stellar disc, giving rise to a prograde bias for all low-metallicity stars. We find subdominant contributions from in situ stars formed in the host galaxy before this merger, and in some cases, additional massive mergers. We find few clear correlations between any properties of our MW/M31-mass galaxies at z = 0 and the degree of this prograde bias as a result of diverse merger scenarios. 
    more » « less
  2. null (Ed.)
    ABSTRACT Previous work has argued that atomic gas mass estimates of galaxies from 21-cm H i emission are systematically low due to a cold opaque atomic gas component. If true, this opaque component necessitates a $\sim 35{{\ \rm per\ cent}}$ correction factor relative to the mass from assuming optically thin H i emission. These mass corrections are based on fitting H i spectra with a single opaque component model that produces a distinct ‘top-hat’ shaped line profile. Here, we investigate this issue using deep, high spectral resolution H i VLA observations of M31 and M33 to test if these top-hat profiles are instead superpositions of multiple H i components along the line of sight. We fit both models and find that ${\gt}80{{\ \rm per\ cent}}$ of the spectra strongly prefer a multicomponent Gaussian model while ${\lt}2{{\ \rm per\ cent}}$ prefer the single opacity-corrected component model. This strong preference for multiple components argues against previous findings of lines of sight dominated by only cold H i. Our findings are enabled by the improved spectral resolution (0.42 ${\rm km\, s^{-1}}$), whereas coarser spectral resolution blends multiple components together. We also show that the inferred opaque atomic ISM mass strongly depends on the goodness-of-fit definition and is highly uncertain when the inferred spin temperature has a large uncertainty. Finally, we find that the relation of the H i surface density with the dust surface density and extinction has significantly more scatter when the inferred H i opacity correction is applied. These variations are difficult to explain without additionally requiring large variations in the dust properties. Based on these findings, we suggest that the opaque H i mass is best constrained by H i absorption studies. 
    more » « less
  3. We investigate the validity of Taylor’s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the first four encounters. The applicability of TH is investigated by measuring the parameter ϵ  =  δu 0 /√2 V ⊥ , which quantifies the ratio between the typical speed of large-scale fluctuations, δu 0 , and the local perpendicular PSP speed in the solar wind frame, V ⊥ . TH is expected to be applicable for ϵ ≲ 0.5 when PSP is moving nearly perpendicular to the local magnetic field in the plasma frame, irrespective of the Alfvén Mach number M A = V SW ∕ V A , where V SW and V A are the local solar wind and Alfvén speed, respectively. For the four selected solar wind intervals, we find that between 10 and 60% of the time, the parameter ϵ is below 0.2 and the sampling angle (between the spacecraft velocity in the plasma frame and the local magnetic field) is greater than 30°. For angles above 30°, the sampling direction is sufficiently oblique to allow one to reconstruct the reduced energy spectrum E ( k ⊥ ) of magnetic fluctuations from its measured frequency spectra. The spectral indices determined from power-law fits of the measured frequency spectrum accurately represent the spectral indices associated with the underlying spatial spectrum of turbulent fluctuations in the plasma frame. Aside from a frequency broadening due to large-scale sweeping that requires careful consideration, the spatial spectrum can be recovered to obtain the distribution of fluctuation’s energy across scales in the plasma frame. 
    more » « less

    We present a study of 9 242 spectroscopically confirmed quasars with multiepoch ugriz photometry from the SDSS Southern Survey. By fitting a separable linear model to each quasar’s spectral variations, we decompose their five-band spectral energy distributions into variable (disc) and non-variable (host galaxy) components. In modelling the disc spectra, we include attenuation by dust on the line of sight through the host galaxy to its nucleus. We consider five commonly used attenuation laws, and find that the best description is by dust similar to that of the Small Magellanic Cloud, inferring a lack of carbonaceous grains from the relatively weak 2175-Å absorption feature. We go on to construct a composite spectrum for the quasar variations spanning 700–8000 Å. By varying the assumed power-law Lν ∝ να spectral slope, we find a best-fitting value α = 0.71 ± 0.02, excluding at high confidence the canonical Lν ∝ ν1/3 prediction for a steady-state accretion disc with a T ∝ r−3/4 temperature profile. The bluer spectral index of the observed quasar variations instead supports the model of Agol & Krolik, and Mummery & Balbus, in which a steeper temperature profile, T ∝ r−7/8, develops as a result of finite magnetically induced stress at the innermost stable circular orbit extracting energy and angular momentum from the black hole spin.

    more » « less
  5. Abstract

    We present a cross-correlation analysis between1resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inover the range 103<< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-measurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.

    more » « less