skip to main content


Title: The intrinsic reddening of the Magellanic Clouds as traced by background galaxies – III. The Large Magellanic Cloud
We present a map of the total intrinsic reddening across ≃ 90 deg2 of the Large Magellanic Cloud (LMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created from a sample of 222,752 early-type galaxies based on the lephare χ2 minimization SED-fitting routine. We find excellent agreement between the regions of enhanced intrinsic reddening across the central (4 × 4 deg2) region of the LMC and the morphology of the low-level pervasive dust emission as traced by far-IR emission. In addition, we are able to distinguish smaller, isolated enhancements that are coincident with known star-forming regions and the clustering of young stars observed in morphology maps. The level of reddening associated with the molecular ridge south of 30 Doradus is, however, smaller than in the literature reddening maps. The reduced number of galaxies detected in this region, due to high extinction and crowding, may bias our results towards lower reddening values. Our map is consistent with maps derived from red clump stars and from the analysis of the star formation history across the LMC. This study represents one of the first large-scale categorisations of extragalactic sources behind the LMC and as such we provide the lephare outputs for our full sample of ∼ 2.5 million sources.  more » « less
Award ID(s):
1908331
NSF-PAR ID:
10349594
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present a map of the total intrinsic reddening across ≃34 deg2 of the Small Magellanic Cloud (SMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created using a subsample of 29 274 galaxies with low levels of intrinsic reddening based on the lephare χ2 minimization SED-fitting routine. We find statistically significant enhanced levels of reddening associated with the main body of the SMC compared with regions in the outskirts [ΔE(B − V) ≃ 0.3 mag]. A comparison with literature reddening maps of the SMC shows that, after correcting for differences in the volume of the SMC sampled, there is good agreement between our results and maps created using young stars. In contrast, we find significant discrepancies between our results and maps created using old stars or based on longer wavelength far-IR dust emission that could stem from biased samples in the former and uncertainties in the far-IR emissivity and the optical properties of the dust grains in the latter. This study represents one of the first large-scale categorizations of extragalactic sources behind the SMC and as such we provide the lephare outputs for our full sample of ∼500 000 sources. 
    more » « less
  2. ABSTRACT

    We present high-resolution maps of the dust reddening in the Magellanic Clouds (MCs). The maps cover the Large and Small Magellanic Cloud (LMC and SMC) area and have a spatial angular resolution between ∼26 arcsec and 55 arcmin. Based on the data from the optical and near-infrared (IR) photometric surveys, including the Gaia Survey, the SkyMapper Southern Survey (SMSS), the Survey of the Magellanic Stellar History (SMASH), the Two Micron All Sky Survey (2MASS), and the near-IR YJKS VISTA survey of the Magellanic Clouds system (VMC), we have obtained multiband photometric stellar samples containing over 6 million stars in the LMC and SMC area. Based on the measurements of the proper motions and parallaxes of the individual stars from Gaia Early Data Release 3 (Gaia EDR3), we have built clean samples that contain stars from the LMC, SMC, and Milky Way (MW), respectively. We apply the spectral energy distribution (SED) fitting to the individual sample stars to estimate their reddening values. As a result, we have derived the best-fitting reddening values of ∼1.9 million stars in the LMC, 1.5 million stars in the SMC, and 0.6 million stars in the MW, which are used to construct dust reddening maps in the MCs. Our maps are consistent with those from the literature. The resultant high-resolution dust maps in the MCs are not only important tools for reddening correction of sources in the MCs, but also fundamental for the studies of the distribution and properties of dust in the two galaxies.

     
    more » « less
  3. null (Ed.)
    Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r 200 . Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA’s unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the “Northern Clump,” we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r 100 , of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the “Little Southern Clump”) towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 σ . The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure. 
    more » « less
  4. ABSTRACT

    We aim to determine the intrinsic far-Infrared (far-IR) emission of X-ray-luminous quasars over cosmic time. Using a 16 deg2 region of the Stripe 82 field surveyed by XMM-Newton and Herschel Space Observatory, we identify 2905 X-ray luminous (LX > 1042 erg/s) active galactic nuclei (AGN) in the range z ≈ 0–3. The IR is necessary to constrain host galaxy properties such as star formation rate (SFR) and gas mass. However, only 10 per cent of our AGN are detected both in the X-ray and IR. Because 90 per cent of the sample is undetected in the far-IR by Herschel, we explore the mean IR emission of these undetected sources by stacking their Herschel/SPIRE images in bins of X-ray luminosity and redshift. We create stacked spectral energy distributions from the optical to the far-IR, and estimate the median SFR, dust mass, stellar mass, and infrared luminosity using a fitting routine. We find that the stacked sources on average have similar SFR/Lbol ratios as IR detected sources. The majority of our sources fall on or above the main sequence line suggesting that X-ray selection alone does not predict the location of a galaxy on the main sequence. We also find that the gas depletion time scales of our AGN are similar to those of dusty star forming galaxies. This suggests that X-ray selected AGN host high star formation and that there are no signs of declining star formation.

     
    more » « less
  5. ABSTRACT

    Radial colour gradients within galaxies arise from gradients of stellar age, metallicity, and dust reddening. Large samples of colour gradients from wide-area imaging surveys can complement smaller integral-field spectroscopy data sets and can be used to constrain galaxy formation models. Here, we measure colour gradients for low-redshift galaxies (z < 0.1) using photometry from the DESI Legacy Imaging Survey DR9. Our sample comprises ∼93 000 galaxies with spectroscopic redshifts and ∼574 000 galaxies with photometric redshifts. We focus on gradients across a radial range 0.5Reff to Reff, which corresponds to the inner disc of typical late-type systems at low redshift. This region has been the focus of previous statistical studies of colour gradients and has recently been explored by spectroscopic surveys such as MaNGA. We find that the colour gradients of most galaxies in our sample are negative (redder towards the centre), consistent with the literature. We investigate empirical relationships between colour gradient, average g − r and r − z colour, Mr, M⋆, and sSFR. Trends of gradient strength with Mr (M⋆) show an inflection around Mr ∼ −21 ($\log _{10} \, M_\star /\mathrm{M_\odot }\sim 10.5$). Below this mass, colour gradients become steeper with increasing M⋆, whereas colour gradients in more massive galaxies become shallower. We find that positive gradients (bluer stars at smaller radii) are typical for galaxies of $M_{\star }\sim 10^{8}\, \mathrm{M_\odot }$. We compare our results to age and metallicity gradients in two data sets derived from fits of different stellar population libraries to MaNGA spectra, but find no clear consensus explanation for the trends we observe. Both MaNGA data sets seem to imply a significant contribution from dust reddening, in particular, to explain the flatness of colour gradients along the red sequence.

     
    more » « less